Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives
Abstract
:1. Introduction
2. Remote Sensing Methods for Vineyard Monitoring
3. Applications of Synthetic Aperture Radar in Viticulture
3.1. Grapevine Monitoring and Management
3.2. Soil Moisture Estimation
3.3. Land Cover Classification
3.4. InSAR for Stability Monitoring
3.5. Airborne and Ground-Based SAR for Vineyard Monitoring
4. Future Perspectives of SAR in Viticulture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, J.A. Remote Sensing with Imaging Radar; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Beaton, A.; Sanden, J.; Corston, K.; Deschamps, A.; Tolszczuk-Leclerc, S. Near Real-Time Monitoring of Ice Breakup in the Far North of Ontario Using RADARSAT-2 in Support of Provincial Flood Forecasting and Warning. In Proceedings of the 19th Workshop on the Hydraulics of Ice Covered Rivers, Whitehorse, YT, Canada, 9–12 July 2017. [Google Scholar]
- Zan, F.D.; Guarnieri, A.M.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Nannini, M.; Yague-Martinez, N.; Scheiber, R.; Minati, F.; Vecchioli, F.; Costantini, M.; Borgstrom, S.; Martino, P.D.; Siniscalchi, V.; et al. Sentinel-1 tops interferometric time series results and validation. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3894–3897. [Google Scholar] [CrossRef]
- Yagüe-Martínez, N.; Prats-Iraola, P.; González, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Meyer, F. GitHub—RadarCODE/Awesome-Sar: A List of Synthetic Aperture Radar (SAR) Software, Libraries, and Resources. Available online: https://github.com/RadarCODE/awesome-sar (accessed on 27 May 2024).
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Kisekka, I.; Peddinti, S.R.; Kustas, W.P.; McElrone, A.J.; Bambach-Ortiz, N.; McKee, L.; Bastiaanssen, W. Spatial–temporal modeling of root zone soil moisture dynamics in a vineyard using machine learning and remote sensing. Irrig. Sci. 2022, 40, 761–777. [Google Scholar] [CrossRef]
- Puig-Sirera, À.; Antichi, D.; Warren Raffa, D.; Rallo, G. Application of remote sensing techniques to discriminate the effect of different soil management treatments over rainfed vineyards in chianti terroir. Remote Sens. 2021, 13, 716. [Google Scholar] [CrossRef]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover From Sentinel-1a SAR and SRTM Digital Elevation Model Data Using Random Forests. Remote Sens. 2015, 7, 14876. [Google Scholar] [CrossRef]
- Hütt, C.; Koppe, W.; Miao, Y.; Bareth, G. Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef]
- Hu, B.; Xu, Y.; Huang, X.; Cheng, Q.; Ding, Q.; Bai, L.; Li, Y. Improving Urban Land Cover Classification with Combined Use of Sentinel-2 and Sentinel-1 Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 533. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Pace, G.D. A Prototype Software Package to Retrieve Soil Moisture From Sentinel-1 Data by Using a Bayesian Multitemporal Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
- Todisco, F.; Vergni, L.; Ortenzi, S.; Matteo, L.D. Soil Loss Estimation Coupling a Modified USLE Model With a Runoff Correction Factor Based on Rainfall and Satellite Soil Moisture Data. Water 2022, 14, 2081. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multi-Temporal RADARSAT-2 Polarimetric SAR Data for Urban Land-Cover Classification Using an Object-Based Support Vector Machine and a Rule-Based Approach. Int. J. Remote Sens. 2012, 34, 1–26. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Xu, J.; Zhang, R.; Lu, Y. Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands. Remote Sens. 2020, 12, 407. [Google Scholar] [CrossRef]
- Ghanbari, M.; Xu, L.; Clausi, D.A. Local and Global Spatial Information for Land Cover Semisupervised Classification of Complex Polarimetric SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3892–3904. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Squicciarino, G.; Cenci, L.; Boni, G.; Pierdicca, N.; Chini, M.; Versace, C.; Campanella, P. A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data. Environ. Model. Softw. 2018, 102, 13–28. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.L.; et al. Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 520–539. [Google Scholar] [CrossRef]
- van Hateren, T.; Chini, M.; Matgen, P.; Pulvirenti, L.; Pierdicca, N.; Teuling, A. On the potential of Sentinel-1 for sub-field scale soil moisture monitoring. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103342. [Google Scholar] [CrossRef]
- Beale, J.; Waine, T.; Evans, J.; Corstanje, R. A Method to Assess the Performance of SAR-Derived Surface Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4504–4516. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmüller, U.; Cartus, O.; Dabrowska-Zielinska, K.; et al. Sentinel-1 soil moisture at 1-km resolution: A validation study. Remote Sens. Environ. 2021, 263, 112554. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D. Potentials of polarimetric SAR interferometry for agriculture monitoring. Radio Sci. 2009, 44, 2008RS004078. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, Q.; Su, Y.; Chen, Z. Advances in research on crop identification using SAR. In Proceedings of the 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics), Istanbul, Turkey, 20–24 July 2015; pp. 312–317. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J. A Review of Multitemporal Synthetic Aperture Radar (SAR) for Crop Monitoring. In Multitemporal Remote Sensing; Ban, Y., Ed.; Remote Sensing and Digital Image Processing; Springer International Publishing: Cham, Switzerland, 2016; Volume 20, pp. 317–340. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar Remote Sensing of Agricultural Canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, D.; Zhong, G. A Review of Crop Classification Using Satellite-Based Polarimetric SAR Imagery. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Hangzhou, China, 6–9 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, C.A.; Chen, Z.X.; Shao, Y.; Chen, J.S.; Hasi, T.; Pan, H.Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation – a review of characteristics and approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Dainelli, R.; Palliotti, A.; Toscano, P.; Matese, A. Sentinel-2 Validation for Spatial Variability Assessment in Overhead Trellis System Viticulture Versus UAV and Agronomic Data. Remote Sens. 2019, 11, 2573. [Google Scholar] [CrossRef]
- Mathews, A.J. Applying Geospatial Tools and Techniques to Viticulture. Geogr. Compass 2013, 7, 22–34. [Google Scholar] [CrossRef]
- Karakizi, C.; Oikonomou, M.; Karantzalos, K. Vineyard Detection and Vine Variety Discrimination From Very High Resolution Satellite Data. Remote Sens. 2016, 8, 235. [Google Scholar] [CrossRef]
- Vélez, S.; Barajas, E.; Rubio, J.A.; Vacas, R.; Poblete-Echeverría, C. Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated From Sentinel Satellite Data: Progressive Vine Removal Experiments. Appl. Sci. 2020, 10, 3612. [Google Scholar] [CrossRef]
- Lamb, D.; Weedon, M.M.; V. Bramley, R.G. Using Remote Sensing to Predict Grape Phenolics and Colour at Harvest in a Cabernet Sauvignon Vineyard: Timing Observations Against Vine Phenology and Optimising Image Resolution. Aust. J. Grape Wine Res. 2008, 10, 46–54. [Google Scholar] [CrossRef]
- Rey-Caramés, C.; Diago, M.P.; Martín, M.P.; Lobo, A.; Tardáguila, J. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability Within a Vineyard. Remote Sens. 2015, 7, 14458–14481. [Google Scholar] [CrossRef]
- Dorin, B.; Reynolds, A.; Jollineau, M.; Lee, H.S.; Shemrock, A. Utilization of Unmanned Aerial Vehicles for Zonal Winemaking in Cool-Climate Riesling Vineyards. Oeno One 2022, 56, 327–341. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Aimonino, D.R.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.A.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily Mapping of 30 M LAI and NDVI for Grape Yield Prediction in California Vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef]
- Anastasiou, E.; Balafoutis, A.T.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [Google Scholar] [CrossRef]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Mazzia, V.; Comba, L.; Khaliq, A.; Chiaberge, M. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Sensors 2020, 20, 2530. [Google Scholar] [CrossRef] [PubMed]
- Laroche-Pinel, E.; Albughdadi, M.; Duthoit, S.; Chéret, V.; Rousseau, J.; Clenet, H. Understanding Vine Hyperspectral Signature Through Different Irrigation Plans: A First Step to Monitor Vineyard Water Status. Remote Sens. 2021, 13, 536. [Google Scholar] [CrossRef]
- Darra, N.; Psomiadis, E.; Kasimati, A.; Anastasiou, A.; Anastasiou, E.; Fountas, S. Remote and Proximal Sensing-Derived Spectral Indices and Biophysical Variables for Spatial Variation Determination in Vineyards. Agronomy 2021, 11, 741. [Google Scholar] [CrossRef]
- Garrido-Villén, N.; Berné, J.L. GNSS-IR Applied to Vineyard Moisture. Preprints 2022. [Google Scholar] [CrossRef]
- Kordi, F.; Yousefi, H. Crop classification based on phenology information by using time series of optical and synthetic-aperture radar images. Remote Sens. Appl. Soc. Environ. 2022, 27, 100812. [Google Scholar] [CrossRef]
- Remond, A.; Beaudoin, A.; King, C. SAR imagery to estimate roughness parameters when modelling runoff risk. Int. J. Remote Sens. 1999, 20, 2613–2625. [Google Scholar] [CrossRef]
- Burini, A.; Minchella, A.; Solimini, D. SAR in agriculture: Sensitivity of backscattering to grapes. Int. Geosci. Remote Sens. Symp. (IGARSS) 2005, 3, 1542–1545. [Google Scholar] [CrossRef]
- Schiavon, G.; Solimini, D.; Burini, A. Sensitivity of multi-temporal high resolution Polarimetrie C and L-band SAR to grapes in vineyards. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3651–3654. [Google Scholar] [CrossRef]
- Loussert, P.; Baup, F.; Corgne, S.; Quénol, H.; Ortega, A. Analysis of SAR and optical temporal signatures of grapevine over a heterogeneous vineyard landscape. In Proceedings of the Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, Edinburgh, UK, 26–29 September 2016; Volume 9998. [Google Scholar] [CrossRef]
- Roussel, G.; Bombrun, L.; Germain, C.; Samalens, J.C.; Spigai, M. Vine Vigour Characterization Using a Multi-Temporal X-Band SAR Very High Resolution Dataset; HAL Open Science: Lyon, France, 2019. [Google Scholar]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and lai estimations using optical and sar remote sensing imagery for vineyards plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Davitt, A.; Tesser, D.; Gamarro, H.; Anderson, M.; Knipper, K.; Xue, J.; Kustas, W.; Alsina, M.M.; Podest, E.; McDonald, K. The complementary uses of Sentinel-1A SAR and ECOSTRESS datasets to identify vineyard growth and conditions: A case study in Sonoma County, California. Irrig. Sci. 2022, 40, 655–681. [Google Scholar] [CrossRef]
- Fontanelli, G.; Lapini, A.; Santurri, L.; Pettinato, S.; Santi, E.; Ramat, G.; Pilia, S.; Baroni, F.; Tapete, D.; Cigna, F.; et al. Early-Season Crop Mapping on an Agricultural Area in Italy Using X-Band Dual-Polarization SAR Satellite Data and Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 6789–6803. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef]
- Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Garmendia-Lopez, I.; Mangas-Martin, V.J. Incoherent electromagnetic model for vineyards at C-band. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5689–5692. [Google Scholar] [CrossRef]
- Ballester-Berman, J.D.; Jagdhuber, T.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F. Soil moisture estimation in vineyards by means of C-band radar measurements. In Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR 2014; 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 252–255. [Google Scholar]
- Bazzi, H.; Baghdadi, N.; El Hajj, M.; Zribi, M.; Belhouchette, H. A Comparison of Two Soil Moisture Products S2MP and Copernicus-SSM over Southern France. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3366–3375. [Google Scholar] [CrossRef]
- Lei, F.; Crow, W.T.; Kustas, W.P.; Dong, J.; Yang, Y.; Knipper, K.R.; Anderson, M.C.; Gao, F.; Notarnicola, C.; Greifeneder, F.; et al. Data assimilation of high-resolution thermal and radar remote sensing retrievals for soil moisture monitoring in a drip-irrigated vineyard. Remote Sens. Environ. 2020, 239, 111622. [Google Scholar] [CrossRef] [PubMed]
- Mendes, M.P.; Matias, M.; Gomes, R.C.; Falcão, A.P. Delimitation of low topsoil moisture content areas in a vineyard using remote sensing imagery (Sentinel-1 and Sentinel-2) in a Mediterranean-climate region. Soil Water Res. 2021, 16, 85–94. [Google Scholar] [CrossRef]
- Efremova, N.; Seddik, M.E.A.; Erten, E. Soil Moisture Estimation Using Sentinel-1/-2 Imagery Coupled with CycleGAN for Time-Series Gap Filing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4705111. [Google Scholar] [CrossRef]
- Chen, F.; Lei, F.; Knipper, K.; Gao, F.; McKee, L.; del Mar Alsina, M.; Alfieri, J.; Anderson, M.; Bambach, N.; Castro, S.J.; et al. Application of the vineyard data assimilation (VIDA) system to vineyard root-zone soil moisture monitoring in the California Central Valley. Irrig. Sci. 2022, 40, 779–799. [Google Scholar] [CrossRef]
- Gao, B.C. Normalized difference water index for remote sensing of vegetation liquid water from space. In Imaging Spectrometry; Descour, M.R., Mooney, J.M., Perry, D.L., Illing, L.R., Eds.; SPIE: Bellingham, WA, USA, 1995. [Google Scholar] [CrossRef]
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Hardisky, M.; Klemas, V.; Smart, R. The Influences of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Reflectance of Spartina Alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Rouse, J.; Haas, R.; Scheel, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Greenbelt, MD, USA, 10–15 December 1974; Volume 1, pp. 48–62. [Google Scholar]
- Notarnicola, C.; Asam, S.; Jacob, A.; Marin, C.; Rossi, M.; Stendardi, L. Mountain crop monitoring with multitemporal Sentinel-1 and Sentinel-2 imagery. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images, MultiTemp 2017, Brugge, Belgium, 27–29 June 2017. [Google Scholar] [CrossRef]
- Orlíková, L.; Horák, J. Land cover classification using sentinel-1 SAR data. In Proceedings of the ICMT 2019—7th International Conference on Military Technologies, Proceedings, Brno, Czech Republic, 30–31 May 2019. [Google Scholar] [CrossRef]
- Moine, M.; Giraud, H.; Puissant, A. Development of a semi-automatic land cover mapping method from polarimetric SAR images; [Mise en place d’une methode semi-Automatique de cartographie de l’occupation des sols a partir d’images RSO polarimetriques]. Rev. Fr. De Photogramm. Et De Teledetect. 2017, 2017, 13–23. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Kampes, B.M. Radar Interferometry: Persistent Scatterer Technique; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Ketelaar, V.B.H. Satellite Radar Interferometry Subsidence Monitoring Techniques; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; IGARSS ’03. Volume 7, pp. 4362–4364. [Google Scholar] [CrossRef]
- Strozzi, T.; Wegmuller, U.; Keusen, H.; Graf, K.; Wiesmann, A. Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2006, 3, 15–18. [Google Scholar] [CrossRef]
- Mora, O.; Mallorquí, J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.; Berardino, P.; Sansosti, E. Small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Hooper, A. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation. Ph.D. Thesis, The Department of Geophysics, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Crosetto, M.; Biescas, E.; Duro, J.; Closa, J.; Arnaud, A. Generation of advanced ERS and Envisat interferometric SAR products using the Stable Point Network technique. Photogramm. Eng. Remote Sens. 2008, 74, 443–451. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry with Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2012, 50, 271–280. [Google Scholar] [CrossRef]
- Samiei-Esfahany, S.; Martins, J.E.; van Leijen, F.; Hanssen, R.F. Phase Estimation for Distributed Scatterers in InSAR Stacks Using Integer Least Squares Estimation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5671–5687. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Efficient Phase Estimation for Interferogram Stacks. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4109–4125. [Google Scholar] [CrossRef]
- Czikhardt, R.; Papco, J.; Bakon, M.; Liscak, P.; Ondrejka, P.; Zlocha, M. Ground Stability Monitoring of Undermined and Landslide Prone Areas by Means of Sentinel-1 Multi-Temporal InSAR, Case Study from Slovakia. Geosciences 2017, 7, 87. [Google Scholar] [CrossRef]
- Perissin, D. SARproZ Software. Official Product Web Page. 2024. Available online: http://www.sarproz.com/ (accessed on 29 May 2024).
- Weather Underground, Inc. History & Data Archive. 2024. Available online: https://www.wunderground.com/history/ (accessed on 29 May 2024).
- Baghdadi, N.; Holah, N.; Dubois-Fernandez, P.; Dupuis, X.; Garestier, F. Evaluation of polarimetric L- and P-bands RAMSES data for characterizing Mediterranean vineyards. Can. J. Remote Sens. 2006, 32, 380–389. [Google Scholar] [CrossRef]
- Burini, A.; Del Frate, F.; Minchella, A.; Schiavon, G.; Solimini, D.; Bianchi, R.; Fusco, L.; Horn, R. Multi-temporal high-resolution Polarimetrie L-band SAR observation of a wine-producing landscape. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 31 July–4 August 2006; pp. 505–507. [Google Scholar] [CrossRef]
- Burini, A.; Schiavon, G.; Solimini, D. Fusion of high resolution polarimetric sar and multi-spectral optical data for precision viticulure. Int. Geosci. Remote Sens. Symp. 2008, 3, III1000–III1003. [Google Scholar] [CrossRef]
- Eccleston, K.W.; Platt, I.G.; Tan, A.E.C. SAR for grape bunch detection in vineyards. In Proceedings of the 2018 Australian Microwave Symposium, AMS 2018—Conference Proceedings, Brisbane, QLD, Australia, 6–7 February 2018; pp. 3–4. [Google Scholar] [CrossRef]
- Parr, B.; Legg, M.; Alam, F.; Bradley, S. Acoustic Identification of Grape Clusters Occluded by Foliage. In Proceedings of the 2020 IEEE Sensors Applications Symposium, SAS 2020, Kuala Lumpur, Malaysia, 9–11 March 2020. [Google Scholar] [CrossRef]
- Pereira, L.O.; Furtado, L.F.; Leão Novo, E.M.; Sant’Anna, S.; Liesenberg, V.; Freire Silva, T.S. Multifrequency and Full-Polarimetric SAR Assessment for Estimating Above Ground Biomass and Leaf Area Index in the Amazon Várzea Wetlands. Remote Sens. 2018, 10, 1355. [Google Scholar] [CrossRef]
- Kraatz, S.; Siqueira, P.; Kellndorfer, J.; Torbick, N.; Huang, X.; Cosh, M.H. Evaluating the Robustness of NISAR’s Cropland Product to Time of Observation, Observing Mode, and Dithering. Earth Space Sci. 2022, 9, e2022EA002366. [Google Scholar] [CrossRef]
- Kraatz, S.; Lamb, B.T.; Hively, W.D.; Jennewein, J.S.; Gao, F.; Cosh, M.H.; Siqueira, P. Comparing NISAR (Using Sentinel-1), USDA/NASS CDL, and Ground Truth Crop/Non-Crop Areas in an Urban Agricultural Region. Sensors 2023, 23, 8595. [Google Scholar] [CrossRef]
- Adeli, S.; Salehi, B.; Mahidanpari, M.; Quackenbush, L.J.; Chapman, B. Moving Toward L-Band NASA-ISRO SAR Mission (NISAR) Dense Time Series: Multipolarization Object-Based Classification of Wetlands Using Two Machine Learning Algorithms. Earth Space Sci. 2021, 8, e2021EA001742. [Google Scholar] [CrossRef]
- Labrière, N.; Tao, S.; Chave, J.; Scipal, K.; Toan, T.L.; Abernethy, K.; Alonso, A.; Barbier, N.; Bissiengou, P.; Casal, T.; et al. In Situ Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3617–3627. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, R. The NASA-ISRO SAR (NISAR) Mission Dual-Band Radar Instrument Preliminary Design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar] [CrossRef]
- Rosen, P.A.; Kim, Y.J.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, V.R. Global Persistent SAR Sampling With the NASA-ISRO SAR (NISAR) Mission. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [Google Scholar] [CrossRef]
- Toan, T.L.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.H.; et al. The BIOMASS Mission: Mapping Global Forest Biomass to Better Understand the Terrestrial Carbon Cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef]
- Quegan, S.; Toan, T.L.; Chave, J.; Dall, J.; Exbrayat, J.; Tong Minh, D.H.; Lomas, M.; d’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS Mission: Measuring Forest Above-Ground Biomass From Space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef]
- Banda, F.; Giudici, D.; Toan, T.L.; d’Alessandro, M.M.; Papathanassiou, K.; Quegan, S.; Riembauer, G.; Scipal, K.; Soja, M.J.; Tebaldini, S.; et al. The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation. Remote Sens. 2020, 12, 985. [Google Scholar] [CrossRef]
- Mengen, D.; Montzka, C.; Jagdhuber, T.; Fluhrer, A.; Brogi, C.; Baum, S.; Schüttemeyer, D.; Bayat, B.; Bogena, H.; Coccia, A.; et al. The SARSense Campaign: Air- and Space-Borne C- and L-Band SAR for the Analysis of Soil and Plant Parameters in Agriculture. Remote Sens. 2021, 13, 825. [Google Scholar] [CrossRef]
- Torres, R.; Geudtner, D.; Davidson, M.; Bibby, D.; Navas-Traver, I.; Hernandez, A.I.G.; Laduree, G.; Poupaert, J.; Cossu, M.; Touveneau, M.; et al. Sentinel-1 Next Generation: Enhanced C-band Data Continuity. In Proceedings of the EUSAR 2022; 14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022; VDE: Berlin, Germany, 2022; pp. 1–3. [Google Scholar]
- Koyama, C.; Shimada, M.; Ohki, M.; Tadono, T. From ALOS-2 to ALOS-4: Japan’s pioneering L-band SARs for global vegetation monitoring, state-of-the-art and future perspectives. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; Volume 12729, p. 127290H. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Comission, E. Vineyards in the EU—Statistics—ec.europa.eu. Available online: https://ec.europa.eu/eurostat/ (accessed on 11 April 2024).
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Biasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Song, R.; Zhu, Z.; Zhang, L.; Li, H.; Wang, H. A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards. Plants 2023, 12, 997. [Google Scholar] [CrossRef]
- Williams, J.; Morande, J.A.; Vaghti, M.G.; Medellín-Azuara, J.; Viers, J.H. Ecosystem Services in Vineyard Landscapes: A Focus on Aboveground Carbon Storage and Accumulation. Carbon Balance Manag. 2020, 15, 23. [Google Scholar] [CrossRef]
Satellite | Country | Agency | Years | f (GHz) | (cm) | Band | Pol. | ΔT (Day) |
---|---|---|---|---|---|---|---|---|
Seasat | USA | JPL | 1978–1978 | 1.27 | 23.5 | L | HH | 3 |
SIR-B | USA | JPL | 1984–1984 | 1.28 | 23.4 | L | HH | - |
Magellan 1 | USA | JPL | 1989–1992 | 2.39 | 12.6 | S | linear | var |
ERS-1 | EU | ESA | 1991–2000 | 5.30 | 5.7 | C | VV | 35 2 |
JERS-1 | Japan | JAXA | 1992–1998 | 1.27 | 23.5 | L | HH | 44 |
SIR-C/X-SAR | USA | JPL | 1994–1994 | 1.24 | 24.2 | L | SP | 1 |
5.29 | 5.7 | C | SP | 1 | ||||
9.60 | 3.1 | X | VV | 1 | ||||
ERS-2 | EU | ESA | 1995–2011 | 5.30 | 5.7 | C | VV | 35 3 |
RADARSAT-1 | Canada | CSA | 1995–2013 | 5.30 | 5.7 | C | HH | 24 |
SRTM | USA | JPL | 2000–2000 | 5.30 | 5.7 | C | DP | 0 |
9.60 | 3.1 | X | VV | 0 | ||||
Envisat | EU | ESA | 2002–2012 | 5.33 | 5.6 | C | SP, DP | 35 |
ALOS | Japan | JAXA | 2006–2011 | 1.27 | 23.6 | L | SP, DP, QP | 46 |
RADARSAT-2 | Canada | CSA | 2007–present | 5.30 | 5.7 | C | SP, DP | 24 |
TerraSAR-X | Germany | DLR | 2007–present | 9.65 | 3.1 | X | SP, DP | 11 4 |
COSMO-SkyMed 5 | Italy | CSI | 2007–present | 9.65 | 3.1 | X | SP, DP, QP | 16 6 |
TanDEM-X | Germany | DLR | 2010–present | 9.65 | 3.1 | X | SP, DP, QP | 11 7 |
RISAT-1 | India | ISRO | 2012–2016 | 5.35 | 5.6 | C | SP, DP, QP | 25 |
HJ-1C | China | CRESDA | 2012–present | 3.13 | 9.6 | S | SP | 31 |
Kompsat-5 | Korea | KARI | 2013–present | 9.66 | 3.2 | X | SP | 28 |
Sentinel-1A | EU | ESA | 2014–present | 5.41 | 5.5 | C | SP, DP | 12 8 |
ALOS 2 | Japan | JAXA | 2014–present | 1.26 | 23.8 | L | SP, DP, QP | 14 |
Sentinel-1B | EU | ESA | 2016–2021 | 5.41 | 5.5 | C | HH, VV, DP | 12 9 |
Gaofen-3 | China | CNSA | 2016–present | 5.00 | 5.5 | C | SP, DP, QP | 29 |
TerraSAR-X NG | Germany | DLR | 2018–canceled | 9.65 | 3.1 | X | SP, DP, QP | 2 |
PAZ | Spain | INTA | 2018–present | 9.65 | 3.1 | X | SP, DP | 11 |
NOVASAR-1 | UK | SSTL | 2018–present | 3.30 | 10.0 | S | SP, DP | 14 |
SAOCOM 1A | Argentina | CONAE | 2018–present | 1.27 | 23.5 | L | SP, DP, QD | 8 10 |
RCM 11 | Canada | CSA | 2019–present | 5.41 | 5.5 | C | SP, CP | 12 12 |
SAOCOM 1B | Argentina | CONAE | 2020–present | 1.27 | 23.5 | L | SP, DP, QD | 8 13 |
CSK 2nd Gen. | Italy | CSI | 2022–present | 9.65 | 3.1 | X | SP, DP, QD | 16 14 |
NISAR | India, USA | NASA, ISRO | 2024–planned | 1.20 | 24.0 | L | SP, DP, QD | 12 |
1.50 | 12.0 | S | SP, DP, QD | 12 | ||||
Biomass | EU | ESA | 2024–planned | 0.44 | 70.0 | P | SP, CP | 25 |
Sentinel-1C | EU | ESA | 2024–planned | 5.41 | 5.5 | C | SP, DP | 12 * |
ALOS-4 | Japan | JAXA | 2024–planned | 1.26 | 23.8 | L | SP, DP, QP | 14 |
Sentinel-1D | EU | ESA | 2025–planned | 5.41 | 5.5 | C | SP, DP | 12 * |
TanDEM-L | Germany | DLR | 2028–planned | 1.27 | 23.6 | L | SP, QP | 16 |
ROSE-L | EU | ESA | 2028–planned | 1.26 | 23.8 | L | DP, QP | 6 * |
Harmony | EU | ESA | 2029–planned | passive | passive | C | 12 * | |
Sentinel-1 NG | EU | ESA | 2032–planned | 5.41 | 5.5 | C | SP, DP, QP | <6 * |
Sensor | Description | Measured Characteristics |
---|---|---|
Multispectral sensors | These are the most commonly used sensors in vineyard monitoring. They typically record radiation reflected by grapevines in a small number of broad bands, between 2 and 8, often used to detect stress conditions. Commonly include five sensors for blue, green, red, red-edge (700–740 nm), and near-infrared (780 nm) wavelengths. | Grapevine health, stress levels, photosynthetic activity, chlorophyll concentration, and overall plant vigor. |
RGB cameras | Used for object detection surveys in vineyards, identifying grapevine canopy, shoots, or bunches. Operate within the wavelengths of blue, green, and red. | Canopy structure, shoot density, bunch presence, visual health indicators, and plant growth patterns. |
Hyperspectral sensors | Used to characterize water status, grape quality, and the early identification of pathogens and diseases. Collects data across a wide range of wavelengths (400–2500 nm) with high spectral resolution. | Water status, grape quality parameters (e.g., soluble solids, anthocyanins), early detection of pathogens and diseases. |
Thermal infrared sensors | Mainly used to investigate grapevine water stress, particularly for irrigation purposes. Measure spectral ranges of 7500 to 14,000 nm and can detect thermal variations. | Grapevine water stress, canopy temperature, irrigation requirements, and heat stress indicators. |
LiDAR sensors | Used to estimate biophysical parameters of the grapevine canopy, such as height, width, and density. Include technologies using laser signals for high-precision measurements. | Canopy height, width, density, volume, precise terrain elevation, and spatial variability within the vineyard. |
Optical remote sensing satellites | Various satellites like RapidEye, Landsat 8, IKONOS, Quickbird, MODIS, ASTER, WorldView-3, Pléiades, Sentinel-2, and many others are used. Provide data for monitoring vineyard variability, evapotranspirative processes, soil moisture content, and vineyard water stress prediction. | Soil moisture levels, vineyard layout, structural integrity of grapevines, and biomass distribution. |
Unmanned aerial vehicles | Offer high-resolution data and are efficient and flexible at acquiring multispectral data, thermal infrared images, and RGB images for photogrammetric processing. | Canopy vigor, water status, grapevine growth patterns, spatial variability, and comprehensive monitoring of vineyard health. |
Proximal sensors | Include optical contact sensors and soil moisture sensors used to measure soil properties at close range for assessing the nutritional and physiological states of vines or irrigation. Examples are GreenSeekerTM, Crop CircleTM, OptRXTM, and handheld thermal cameras for measuring parameters like chlorophyll content, nitrogen status, and crop water stress index (CWSI). | Leaf chlorophyll content, nitrogen levels, disease symptoms, photosynthetic efficiency, soil moisture, and plant stress responses. |
Synthetic aperture radar (SAR) | Uses radar to capture high-resolution images of the Earth’s surface, including roughness, structure, and dielectric properties. Often used in satellites for all-weather, day-and-night monitoring. | Provides data for monitoring vineyard variability, soil moisture content, vineyard structure, and stress detection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakon, M.; Teixeira, A.C.; Pádua, L.; Morais, R.; Papco, J.; Kubica, L.; Rovnak, M.; Perissin, D.; Sousa, J.J. Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives. Remote Sens. 2024, 16, 2106. https://doi.org/10.3390/rs16122106
Bakon M, Teixeira AC, Pádua L, Morais R, Papco J, Kubica L, Rovnak M, Perissin D, Sousa JJ. Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives. Remote Sensing. 2024; 16(12):2106. https://doi.org/10.3390/rs16122106
Chicago/Turabian StyleBakon, Matus, Ana Cláudia Teixeira, Luís Pádua, Raul Morais, Juraj Papco, Lukas Kubica, Martin Rovnak, Daniele Perissin, and Joaquim J. Sousa. 2024. "Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives" Remote Sensing 16, no. 12: 2106. https://doi.org/10.3390/rs16122106
APA StyleBakon, M., Teixeira, A. C., Pádua, L., Morais, R., Papco, J., Kubica, L., Rovnak, M., Perissin, D., & Sousa, J. J. (2024). Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives. Remote Sensing, 16(12), 2106. https://doi.org/10.3390/rs16122106