DAENet: Deformable Attention Edge Network for Automatic Coastline Extraction from Satellite Imagery
Abstract
:1. Introduction
- (1)
- Introduction of the multi-scale edge detection module: Upon image input, we introduced the multi-scale transformation (MST) module, applying canny edge detection across multiple spatial scales and stacking them as input channels. This not only enhances the model’s robustness but also facilitates faster convergence.
- (2)
- Construction of an adaptive edge detection module: During training, we developed a Local Adaptive Multi-Head Attention-based Edge Detection (LAMBA) module to enhance the disparities in edge features in the spatial dimension, thus reducing semantic ambiguities that may arise from similar features among objects across different semantic categories.
- (3)
- Exploration of the Deformable Attention (DAT) Application: In order to enhance DAENet’s receptive field, we incorporated deformability into the U-shaped structure. This integration serves to alleviate constraints imposed by the fixed convolutional kernel in CNNs and the conventional patch generation in Transformers. Additionally, edge maps are utilized to compute an edge-aware loss, optimizing a novel edge loss function and accelerating model convergence.
2. Methods
2.1. Overall Framework
2.2. Multi-Scale Transformation Module
2.3. Deformable Attention Transformer
2.4. Local Adaptive Multi-Head Attention-Based Edge Detection Module
2.5. Auxiliary Loss Function
3. Experiment
3.1. Study Area
3.2. Coastline Dataset
3.3. Implementation Details
3.4. Evaluation Metrics
4. Results
4.1. Performance of Daenet
4.2. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Bu, J.; Zhang, Y.; Zhuang, Y.; Chu, Y.; Hu, J.; Guo, B. The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images. Adv. Space Res. 2019, 64, 1780–1791. [Google Scholar] [CrossRef]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, L.; Sun, W.; Xu, W.; Tian, B.; Zhou, Y.; Yang, G.; Chen, C. A new adaptive remote sensing extraction algorithm for complex muddy coast waterline. Remote Sens. 2022, 14, 861. [Google Scholar] [CrossRef]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. 2013, 89, 281–301. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Bell, P.S.; Bird, C.O.; Plater, A.J. A temporal waterline approach to mapping intertidal areas using X-band marine radar. Coast. Eng. 2016, 107, 84–101. [Google Scholar] [CrossRef]
- Green, E.; Mumby, P.J.; Edwards, A.J.; Clark, C.D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 1996, 24, 1–40. [Google Scholar] [CrossRef]
- Vassilakis, E.; Papadopoulou-Vrynioti, K. Quantification of deltaic coastal zone change based on multi-temporal high resolution earth observation techniques. ISPRS Int. J. Geo-Inf. 2014, 3, 18–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, X. Characteristics of coastline changes on Southeast Asia Islands from 2000 to 2015. Remote Sens. 2020, 12, 519. [Google Scholar] [CrossRef]
- Bera, R.; Mait, R. Quantitative analysis of erosion and accretion (1975–2017) using DSAS—A study on Indian Sundarbans. Reg. Stud. Mar. Sci. 2019, 28, 100583. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Konko, Y.; Okhimambe, A.; Nimon, P.; Asaana, J.; Rudant, J.P.; Kokou, K. Coastline change modelling induced by climate change using geospatial techniques in Togo (West Africa). Adv. Remote Sens. 2020, 9, 85–100. [Google Scholar] [CrossRef]
- Hamylton, S.; Prosper, J. Development of a spatial data infrastructure for coastal management in the Amirante Islands. Int. J. Appl. Earth Obs. Geoinf. 2020, 19, 24–30. [Google Scholar] [CrossRef]
- Wu, G.; de Leeuw, J.; Skidmore, A.K.; Liu, Y.; Prins, H.H. Performance of Landsat TM in ship detection in turbid waters. Int. J. Appl. Earth Obs. Geoinf. 2012, 11, 54–61. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of remote sensing in water resource management: The case study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Qiao, G.; Mi, H.; Wang, W.; Tong, X.; Li, Z.; Li, T.; Hong, Y. 55-year (1960–2015) spatiotemporal coastline change analysis using historical DISP and Landsat time series data in Shanghai. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 238–251. [Google Scholar]
- Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline extraction using remote sensing: A review. GISci. Remote Sens. 2023, 60, 1780–1791. [Google Scholar] [CrossRef]
- Chen, C.; Qin, Q.; Zhang, N.; Li, J.; Chen, L.; Wang, J.; Yang, X. Extraction of bridges over water from high-resolution optical remote-sensing images based on mathematical morphology. Int. J. Remote Sens. 2014, 35, 3664–3682. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; He, X.; Chen, J. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China. Ocean. Coast. Manag. 2021, 213, 105842. [Google Scholar] [CrossRef]
- Elkhateeb, E.; Soliman, H.; Atwan, A.; Elmogy, M.; Kwak, K.S.; Mekky, N. A novel coarse-to-Fine Sea-land segmentation technique based on Superpixel fuzzy C-means clustering and modified Chan-Vese model. IEEE Access. 2021, 9, 53902–53919. [Google Scholar] [CrossRef]
- Tong, Q.; Shan, J.; Zhu, B.; Ge, X.; Sun, X.; Liu, Z. Object-Oriented Coastline Classification and Extraction from Remote Sensing Imagery. In Proceedings of the Remote Sensing of the Environment: 18th National Symposium on Remote Sensing of China, Beijing, China, 7–10 September 2007. [Google Scholar]
- Wang, P.; Zhuang, Y.; Chen, H.; Chen, L.; Shi, H.; Bi, F. Pyramid integral image reconstruction algorithm for infrared remote sensing sea-land segmentation. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3763–3766. [Google Scholar]
- Wang, D.; Cui, X.; Xie, F.; Jiang, Z.; Shi, Z. Multi-feature sea–land segmentation based on pixel-wise learning for optical remote-sensing imagery. Int. J. Remote Sens. 2017, 38, 4327–4347. [Google Scholar] [CrossRef]
- Lei, S.; Zou, Z.; Liu, D.; Xia, Z.; Shi, Z. Sea-land segmentation for infrared remote sensing images based on superpixels and multi-scale features. Infrared Phys. Technol. 2018, 91, 12–17. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Xie, F.; Hu, Z.; Sun, W.; Yang, G.; Zhang, Z. Temporal and Spatial Variation of Coastline Using Remote Sensing Images for Zhoushan Archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Fisher, P. The Pixel: A Snare and a Delusion. Int. J. Remote Sens. 1997, 18, 679–685. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Xu, P.; Guo, Z. SAR ship detection using sea-land segmentation-based convolutional neural network. In Proceedings of the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China, 18–21 May 2017. [Google Scholar]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef]
- Lin, Z.; Ji, K.; Leng, X.; Kuang, G. Squeeze and excitation rank faster R-CNN for ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. Lett. 2019, 16, 751–755. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Kuc, T.Y. Sea-land segmentation using deep learning techniques for landsat-8 OLI imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
- Hui, G.; Xiaodong, Y.; Heng, Z.; Yiting, N.; Jiaqi, W. Multi-scale sea-land segmentation method for remote sensing images based on Res2Net. Acta Optia Sin. 2022, 42, 1828004. [Google Scholar]
- Li, Y.; Wang, X.; Zhang, X.; Fang, J.; Zhang, X. WRBSNet: A Novel Sea–Land Segmentation Network With a Wider Range of Batch Sizes. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Chen, C.; Zou, Z.; Sun, W.; Yang, G.; Song, Y.; Liu, Z. Mapping the distribution and dynamics of coastal aquaculture ponds using Landsat time series data based on U2-Net deep learning model. Int. J. Digit. Earth 2024, 17, 2346258. [Google Scholar] [CrossRef]
- Ji, X.; Tang, L.; Lu, T.; Cai, C. DBENet: Dual-Branch Ensemble Network for Sea-Land Segmentation of Remote Sensing Images. IEEE Trans. Instrum. Meas. 2023, 72, 5503611. [Google Scholar] [CrossRef]
- Sun, S.; Mu, L.; Feng, R.; Chen, Y.; Han, W. Quadtree decomposition-based Deep learning method for multiscale coastline extraction with high-resolution remote sensing imagery. Sci. Remote Sens. 2024, 9, 100112. [Google Scholar] [CrossRef]
- Li, Z.; Cui, B.; Yang, G. Edge detection network model of coastline based on deep learning. Comput. Engin. Sci. 2022, 44, 2220–2229. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Dong, R.; Pan, X.; Li, F. DenseU-Net-Based Semantic Segmentation of Small Objects in Urban Remote Sensing Images. IEEE Access. 2019, 7, 65347–65356. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Jiang, J.; Han, Z.; Deng, S.; Li, Z.; Liu, M. Adaptive Effective Receptive Field Convolution for Semantic Segmentation of VHR Remote Sensing Images. IEEE Geosci. Remote Sens. 2021, 59, 3532–3546. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Bruzzone, L. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 426–435. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Zhai, J. Waterline Extraction for Artificial Coast With Vision Transformers. Front. Environ. Sci. 2022, 10, 799250. [Google Scholar] [CrossRef]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking Semantic Segmentation from a Sequence-To-Sequence Perspective with Transformers. arXiv 2021, arXiv:2012.15840. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Yang, Z.; Wang, G.; Feng, L.; Wang, Y.; Wang, G.; Liang, S. A Transformer Model for Coastline Prediction in Weitou Bay, China. Remote Sens. 2023, 15, 4771. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, B.; Liu, Q.; Tan, S.; Wang, S.; Ge, W. SRMA: A Dual-Branch Parallel Multi-Scale Attention Network for Remote Sensing Images Sea-Land Segmentation. Int. J. Remote Sens. 2024, 45, 3370–3395. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [Google Scholar] [CrossRef]
- Guo, J.; Han, K.; Wu, H.; Tang, Y.; Chen, X.; Wang, Y.; Xu, C. CMT: Convolutional Neural Networks Meet Vision Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12175–12185. [Google Scholar]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention Mechanisms in Computer Vision: A Survey. Comp. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9992–10002. [Google Scholar]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction Without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Wang, Y.; Liu, W.; Sun, W.; Meng, X.; Yang, G.; Ren, K. A Progressive Feature Enhancement Deep Network for Large-Scale Remote Sensing Image Superresolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5619413. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Liu, F.; Tong, Y.; Lyu, X.; Zhou, J. Semantic Segmentation of Remote Sensing Images by Interactive Representation Refinement and Geometric Prior-Guided Inference. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5400318. [Google Scholar] [CrossRef]
- Xia, Z.; Pan, X.; Song, S.; Li, L.E.; Huang, G. Vision Transformer with Deformable Attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 4784–4793. [Google Scholar]
- Hou, X.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.; Yu, L. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China Earth Sci. 2016, 59, 1791–1802. [Google Scholar] [CrossRef]
- Wu, T.; Hou, X.; Xu, X. Spatio-temporal characteristics of the mainland coastline utilization degree over the last 70 years in China. Ocean. Coast. Manag. 2014, 98, 150–157. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408715. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ling, F.; Liu, Y.; Fang, F. Spatio-temporal change detection of Ningbo coastline using Landsat time-series images during 1976–2015. ISPRS Int. J. Geo-Inf. 2017, 6, 68. [Google Scholar] [CrossRef]
- Meyer, E.L.; Matzke, N.J.; Williams, S.J. Remote sensing of intertidal habitats predicts West Indian topsnail population expansion but reveals scale-dependent bias. J. Coast. Conserv. 2015, 19, 107–118. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Z.; Zhao, X.; Wen, Q.; Zuo, L.; Wang, X.; Yi, L. Spatial and temporal variations of coastlines in northern China (2000–2012). Int. J. Geogr. Inf. Sci. 2013, 24, 18–32. [Google Scholar] [CrossRef]
- Guo, H. Big Earth data in support of the sustainable development goals (2019). Bull. Chin. Acad. Sci. 2021, 36, 932–939. [Google Scholar]
- Seale, C.; Redfern, T.; Chatfield, P.; Luo, C.; Dempsey, K. Coastline detection in satellite imagery: A deep learning approach on new benchmark data. Remote Sens. Environ. 2022, 278, 113044. [Google Scholar] [CrossRef]
- Zou, Z.; Chen, C.; Liu, Z.; Zhang, Z.; Liang, J.; Chen, H.; Wang, L. Extraction of aquaculture ponds along coastal region using u2-net deep learning model from remote sensing images. Remote Sens. 2022, 14, 4001. [Google Scholar] [CrossRef]
- Sun, W.F.; Ma, Y.; Zhang, J.; Liu, S.W.; Ren, G.B. Study of remote sensing interpretation keys and extraction technique of different types of shoreline. Bull. Surv. Mapp. 2011, 3, 41–44. [Google Scholar]
- Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Electrical Network, Montreal, BC, Canada, 11–17 October 2021; pp. 7262–7272. [Google Scholar]
- Guo, M.H.; Lu, C.Z.; Hou, Q.; Liu, Z.; Cheng, M.M.; Hu, S.M. Segnext: Rethinking convolutional attention design for semantic segmentation. arXiv 2022, arXiv:2209.08575. [Google Scholar]
- Xu, J.; Xiong, Z.; Bhattacharyya, S.P. PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 19529–19539. [Google Scholar]
- Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes. arXiv 2021, arXiv:2101.06085. [Google Scholar]
- Cheng, B.; Misra, I.; Schwing, A.G.; Kirillov, A.; Girdhar, R. Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 1290–1299. [Google Scholar]
Coastline | Sample | Interpretation Signs | Location |
---|---|---|---|
Bedrock Coastline | Distinct concave-convex and mountainous texture features | The evident land–water boundary | |
Silty Coastline | Appears grey or white with a smooth texture | A boundary that is located in an estuary, delta, or low-lying area and has a marked contrast in vegetation density | |
Sandy Coastline | Clear dividing line between white and other colors | Beach ridges and lack of beach ridges, the beach is directly adjacent to the cliffs of the bedrock shoreline | |
Biogenic Coastline | Red tones, darker textures, and irregular shapes | It is mainly distributed in Guangdong, Guangxi, Fujian, Taiwan, and parts of Hainan Island | |
Artificial Coastline | Bright and white structures, smooth textures and narrow stretches, regular layouts, and colors ranging from light beige to tan or even white | A man-made coastline exhibits a multitude of features, which are often intricate and require thorough analysis and consideration |
Method | IoU(%) | F1 (%) | Evaluation Index | ||||
---|---|---|---|---|---|---|---|
Ocean | Land | Ocean | Land | MioU (%) | OA (%) | FWIoU (%) | |
Segmenter | 90.49 | 94.09 | 92.28 | 92.21 | 85.61 | 92.25 | 85.61 |
SegNeXt | 95.67 | 93.84 | 94.71 | 94.77 | 90.01 | 94.74 | 90.01 |
PIDNet | 91.74 | 92.06 | 95.69 | 95.86 | 91.90 | 95.78 | 91.90 |
DDRNet | 92.18 | 92.48 | 95.93 | 96.09 | 92.33 | 96.66 | 92.33 |
Swin-UNet | 88.59 | 88.33 | 93.95 | 93.80 | 88.46 | 93.88 | 88.46 |
Mask2Former | 88.53 | 88.44 | 93.91 | 93.86 | 88.48 | 93.89 | 88.48 |
DAENet | 93.85 | 94.04 | 96.82 | 96.93 | 93.94 | 96.88 | 93.94 |
Method | IoU (%) | F1 (%) | Evaluation Index | ||||
---|---|---|---|---|---|---|---|
Ocean | Land | Ocean | Land | MioU (%) | OA (%) | FWIoU (%) | |
Segmenter | 82.03 | 84.20 | 89.90 | 91.16 | 83.12 | 90.82 | 83.16 |
SegNeXt | 83.71 | 85.64 | 91.13 | 92.26 | 84.68 | 91.13 | 84.72 |
PIDNet | 84.99 | 86.89 | 91.88 | 92.98 | 85.94 | 92.47 | 85.97 |
DDRNet | 85.43 | 87.30 | 92.14 | 93.22 | 86.37 | 93.53 | 86.40 |
Swin-UNet | 83.22 | 85.29 | 90.84 | 92.06 | 84.25 | 91.49 | 83.30 |
Mask2Former | 82.08 | 84.68 | 90.16 | 91.70 | 83.38 | 91.00 | 83.44 |
DAENet | 87.28 | 88.84 | 93.20 | 94.09 | 88.06 | 93.68 | 88.09 |
Method | IoU (%) | F1 (%) | Evaluation Index | ||||
---|---|---|---|---|---|---|---|
Ocean | Land | Ocean | Land | MioU (%) | OA (%) | FWIoU (%) | |
Segmenter | 69.28 | 77.90 | 81.85 | 87.58 | 73.59 | 85.25 | 74.28 |
SegNeXt | 69.70 | 77.88 | 82.14 | 87.56 | 73.79 | 85.34 | 74.45 |
PIDNet | 72.03 | 81.63 | 83.74 | 89.88 | 77.68 | 87.53 | 77.68 |
DDRNet | 72.72 | 82.02 | 84.20 | 90.12 | 77.37 | 87.84 | 78.16 |
Swin-UNet | 74.54 | 82.88 | 85.41 | 90.63 | 78.71 | 88.59 | 79.38 |
Mask2Former | 71.20 | 81.21 | 83.18 | 89.63 | 76.21 | 87.17 | 77.01 |
DAENet | 76.39 | 84.91 | 86.61 | 91.84 | 80.65 | 89.86 | 81.33 |
Method | IoU (%) | |||
---|---|---|---|---|
Ocean | Land | Ocean | Land | |
U-Net | 83.21 | 83.87 | 90.84 | 91.23 |
Swin-UNet | 88.59 | 88.33 | 93.95 | 93.80 |
Swin-UNet + LAMBA | 88.93 | 88.65 | 94.14 | 93.98 |
Swin-UNet + MST | 89.16 | 89.34 | 94.11 | 94.01 |
Swin-UNet + LAMBA + MST | 90.21 | 90.14 | 94.85 | 94.81 |
Dat-UNet | 89.66 | 89.76 | 94.55 | 94.60 |
Dat-UNet + LAMBA | 92.33 | 92.41 | 96.01 | 96.06 |
Dat-UNet + MST | 92.89 | 92.42 | 95.98 | 96.04 |
Dat-UNet + LAMBA + MST | 93.85 | 94.04 | 96.82 | 96.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, B.; Wu, J.; Xu, J.; Wu, C. DAENet: Deformable Attention Edge Network for Automatic Coastline Extraction from Satellite Imagery. Remote Sens. 2024, 16, 2076. https://doi.org/10.3390/rs16122076
Kang B, Wu J, Xu J, Wu C. DAENet: Deformable Attention Edge Network for Automatic Coastline Extraction from Satellite Imagery. Remote Sensing. 2024; 16(12):2076. https://doi.org/10.3390/rs16122076
Chicago/Turabian StyleKang, Buyun, Jian Wu, Jinyong Xu, and Changshang Wu. 2024. "DAENet: Deformable Attention Edge Network for Automatic Coastline Extraction from Satellite Imagery" Remote Sensing 16, no. 12: 2076. https://doi.org/10.3390/rs16122076
APA StyleKang, B., Wu, J., Xu, J., & Wu, C. (2024). DAENet: Deformable Attention Edge Network for Automatic Coastline Extraction from Satellite Imagery. Remote Sensing, 16(12), 2076. https://doi.org/10.3390/rs16122076