Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Conducted Measurements
2.2. Climatic Situation during the Flight Campaign
2.3. Tree Data
2.4. Processing of Remote Sensing Imagery
2.5. Impervious Surfaces
2.6. Statistical Analysis
3. Results
3.1. Distribution of Temperature Differences, Imperviousness, and NDVI of Tree Species
3.2. Adjusted Tree Surface Temperatures
3.3. Adjusted Tree Surface Temperatures Compared to NDVI
3.4. Spatial Variation in Tree Surface Temperatures
3.5. Boruta Variable Importance and Random Forest Model
4. Discussion
4.1. Cooling Potential under Extreme Heat and Drought
4.2. Tree Species Differences
4.3. Influence of Impervious Surfaces
4.4. Adjusted Tree Surface Temperatures and NDVI
4.5. Tree Surface Temperature Model and Importance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated Western European Heatwave Trends Linked to More-Persistent Double Jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk, K.; Twardosz, R.; Wałach, P.; Czarnecka, K.; Błażejczyk, A. Heat Strain and Mortality Effects of Prolonged Central European Heat Wave—An Example of June 2019 in Poland. Int. J. Biometeorol. 2022, 66, 149–161. [Google Scholar] [CrossRef]
- Masselot, P.; Mistry, M.; Vanoli, J.; Schneider, R.; Iungman, T.; Garcia-Leon, D.; Ciscar, J.-C.; Feyen, L.; Orru, H.; Urban, A.; et al. Excess Mortality Attributed to Heat and Cold: A Health Impact Assessment Study in 854 Cities in Europe. Lancet Planet. Health 2023, 7, e271–e281. [Google Scholar] [CrossRef] [PubMed]
- Basarin, B.; Lukić, T.; Matzarakis, A. Review of Biometeorology of Heatwaves and Warm Extremes in Europe. Atmosphere 2020, 11, 1276. [Google Scholar] [CrossRef]
- Zhao, J.; Meili, N.; Zhao, X.; Fatichi, S. Urban Vegetation Cooling Potential during Heatwaves Depends on Background Climate. Environ. Res. Lett. 2023, 18, 014035. [Google Scholar] [CrossRef]
- Santamouris, M.; Osmond, P. Increasing Green Infrastructure in Cities: Impact on Ambient Temperature, Air Quality and Heat-Related Mortality and Morbidity. Buildings 2020, 10, 233. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Eisenman, D.P.; de Guzman, E.B.; Sailor, D.J. Increasing Trees and High-Albedo Surfaces Decreases Heat Impacts and Mortality in Los Angeles, CA. Int. J. Biometeorol. 2022, 66, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Maggiotto, G.; Miani, A.; Rizzo, E.; Castellone, M.D.; Piscitelli, P. Heat Waves and Adaptation Strategies in a Mediterranean Urban Context. Environ. Res. 2021, 197, 111066. [Google Scholar] [CrossRef] [PubMed]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Thekkan, A.F.; George, A.; Prasad, P.R.C.; Joseph, S. Understanding Blue-Green Infrastructure through Spatial Maps: Contribution of Remote Sensing and GIS Technology. In Blue-Green Infrastructure across Asian Countries: Improving Urban Resilience and Sustainability; Dhyani, S., Basu, M., Santhanam, H., Dasgupta, R., Eds.; Springer: Singapore, 2022; pp. 123–138. ISBN 978-981-16-7128-9. [Google Scholar]
- Arellano, B.; Roca, J. Effects of Urban Greenery on Health. A Study from Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 17–24. [Google Scholar] [CrossRef]
- Voogt, J. Urban Heatwaves and Thermal Remote Sensing. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 938–941. [Google Scholar]
- Wang, C.; Ren, Z.; Chang, X.; Wang, G.; Hong, X.; Dong, Y.; Guo, Y.; Zhang, P.; Ma, Z.; Wang, W. Understanding the Cooling Capacity and Its Potential Drivers in Urban Forests at the Single Tree and Cluster Scales. Sustain. Cities Soc. 2023, 93, 104531. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The Influence of Local Background Climate on the Dominant Factors and Threshold-Size of the Cooling Effect of Urban Parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef]
- Cheung, P.K.; Jim, C.Y.; Hung, P.L. Preliminary Study on the Temperature Relationship at Remotely-Sensed Tree Canopy and below-Canopy Air and Ground Surface. Build. Environ. 2021, 204, 108169. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, Y.; Yang, Y.; Chen, G.; Chen, W.; Hejazi, M. Multi-City Assessments of Human Exposure to Extreme Heat during Heat Waves in the United States. Remote Sens. Environ. 2023, 295, 113700. [Google Scholar] [CrossRef]
- Yao, N.; Huang, C.; Yang, J.; Konijnendijk van den Bosch, C.C.; Ma, L.; Jia, Z. Combined Effects of Impervious Surface Change and Large-Scale Afforestation on the Surface Urban Heat Island Intensity of Beijing, China Based on Remote Sensing Analysis. Remote Sens. 2020, 12, 3906. [Google Scholar] [CrossRef]
- Leuzinger, S.; Vogt, R.; Körner, C. Tree Surface Temperature in an Urban Environment. Agric. For. Meteorol. 2010, 150, 56–62. [Google Scholar] [CrossRef]
- Scherrer, D.; Bader, M.K.-F.; Körner, C. Drought-Sensitivity Ranking of Deciduous Tree Species Based on Thermal Imaging of Forest Canopies. Agric. For. Meteorol. 2011, 151, 1632–1640. [Google Scholar] [CrossRef]
- Meier, F.; Scherer, D. Spatial and Temporal Variability of Urban Tree Canopy Temperature during Summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 2012, 110, 373–384. [Google Scholar] [CrossRef]
- Zakrzewska, A.; Kopeć, D.; Krajewski, K.; Charyton, J. Canopy Temperatures of Selected Tree Species Growing in the Forest and Outside the Forest Using Aerial Thermal Infrared (3.6–4.9 Μm) Data. Eur. J. Remote Sens. 2022, 55, 313–325. [Google Scholar] [CrossRef]
- Richter, R.; Hutengs, C.; Wirth, C.; Bannehr, L.; Vohland, M. Detecting Tree Species Effects on Forest Canopy Temperatures with Thermal Remote Sensing: The Role of Spatial Resolution. Remote Sens. 2021, 13, 135. [Google Scholar] [CrossRef]
- Winbourne, J.B.; Jones, T.S.; Garvey, S.M.; Harrison, J.L.; Wang, L.; Li, D.; Templer, P.H.; Hutyra, L.R. Tree Transpiration and Urban Temperatures: Current Understanding, Implications, and Future Research Directions. BioScience 2020, 70, 576–588. [Google Scholar] [CrossRef]
- Adkins, K.; Wambolt, P.; Sescu, A.; Swinford, C.; Macchiarella, N.D. Observational Practices for Urban Microclimates Using Meteorologically Instrumented Unmanned Aircraft Systems. Atmosphere 2020, 11, 1008. [Google Scholar] [CrossRef]
- LfStat Population Data for Municipalities. 2023. Available online: https://www.statistik.bayern.de/ (accessed on 4 June 2024).
- Schwaab, J.; Davin, E.L.; Bebi, P.; Duguay-Tetzlaff, A.; Waser, L.T.; Haeni, M.; Meier, R. Increasing the Broad-Leaved Tree Fraction in European Forests Mitigates Hot Temperature Extremes. Sci. Rep. 2020, 10, 14153. [Google Scholar] [CrossRef] [PubMed]
- Stadt Forchheim. Tree Cadastre of the City of Forchheim; Amt für Öffentliches Grün: Forchheim, Germany, 2023. [Google Scholar]
- DWD Deutscher Wetterdienst. Daily Climate Data for Germany; DWD Deutscher Wetterdienst: Offenbach, Germany, 2022. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/ (accessed on 6 April 2024).
- LfL Bayerische Landesanstalt für Landwirtschaft. Agrarmeteorologie Bayern. Weather Data for Agriculture in Bavaria. 2022. Available online: https://www.wetter-by.de/Agrarmeteorologie-BY/Wetterdaten/Oberfranken (accessed on 6 April 2024).
- LfU Bayerisches Landesamt Für Umwelt. Gewässerkundlicher Dienst Bayern. Water Data for Bavaria. 2022. Available online: https://www.gkd.bayern.de/de/fluesse/wassertemperatur/ (accessed on 6 April 2024).
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- ESA. Copernicus Sentinel 2 Data. 2022. Available online: https://scihub.copernicus.eu/ (accessed on 17 March 2024).
- Irmak, M.A.; Yilmaz, S.; Mutlu, E.; Yilmaz, H. Assessment of the Effects of Different Tree Species on Urban Microclimate. Environ. Sci Pollut. Res. 2018, 25, 15802–15822. [Google Scholar] [CrossRef] [PubMed]
- Smigaj, M.; Gaulton, R.; Suarez, J.; Barr, S. Use of Miniature Thermal Cameras for Detection of Physiological Stress in Conifers. Remote Sens. 2017, 9, 957. [Google Scholar] [CrossRef]
- OPTRIS GmbH. Infrared Cameras—The Most Portable Infrared Online Camera; Factsheet; Optris: Berlin, Germany, 2014. [Google Scholar]
- Das, S.; Christopher, J.; Roy Choudhury, M.; Apan, A.; Chapman, S.; Menzies, N.W.; Dang, Y.P. Evaluation of Drought Tolerance of Wheat Genotypes in Rain-Fed Sodic Soil Environments Using High-Resolution UAV Remote Sensing Techniques. Biosyst. Eng. 2022, 217, 68–82. [Google Scholar] [CrossRef]
- McElroy, S.; Schwarz, L.; Green, H.; Corcos, I.; Guirguis, K.; Gershunov, A.; Benmarhnia, T. Defining Heat Waves and Extreme Heat Events Using Sub-Regional Meteorological Data to Maximize Benefits of Early Warning Systems to Population Health. Sci. Total Environ. 2020, 721, 137678. [Google Scholar] [CrossRef] [PubMed]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; Van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown Size and Growing Space Requirement of Common Tree Species in Urban Centres, Parks, and Forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
- OPTRIS GmbH. Optris PIX Connect. Software for Thermal Imager. Operators’s Manual; Optris: Berlin, Germany, 2021. [Google Scholar]
- OPTRIS GmbH. Basic Principles of Non-Contact Temperature Measurements; Optris: Berlin, Germany, 2022. [Google Scholar]
- Seier, G.; Abermann, J.; Andreassen, L.M.; Carrivick, J.L.; Kielland, P.H.; Löffler, K.; Nesje, A.; Robson, B.A.; Røthe, T.O.; Scheiber, T.; et al. Glacier Thinning, Recession and Advance, and the Associated Evolution of a Glacial Lake between 1966 and 2021 at Austerdalsbreen, Western Norway. Land Degrad. Dev. 2024, 35, 394–414. [Google Scholar] [CrossRef]
- Zhang, Y. MODIS UCSB Emissivity Library; NWP SAF: Reading, UK, 1999. [Google Scholar]
- Ribeiro Da Luz, B.; Crowley, J.K. Spectral Reflectance and Emissivity Features of Broad Leaf Plants: Prospects for Remote Sensing in the Thermal Infrared (8.0–14.0 Μm). Remote Sens. Environ. 2007, 109, 393–405. [Google Scholar] [CrossRef]
- Aubrecht, D.M.; Helliker, B.R.; Goulden, M.L.; Roberts, D.A.; Still, C.J.; Richardson, A.D. Continuous, Long-Term, High-Frequency Thermal Imaging of Vegetation: Uncertainties and Recommended Best Practices. Agric. For. Meteorol. 2016, 228–229, 315–326. [Google Scholar] [CrossRef]
- Heinemann, S.; Siegmann, B.; Thonfeld, F.; Muro, J.; Jedmowski, C.; Kemna, A.; Kraska, T.; Muller, O.; Schultz, J.; Udelhoven, T.; et al. Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor. Remote Sens. 2020, 12, 1075. [Google Scholar] [CrossRef]
- Teledyne FLIR. FLIR ResearchIR; Teledyne FLIR: Wilsonville, OR, USA, 2022. [Google Scholar]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An Operational Land Surface Temperature Product for Landsat Thermal Data: Methodology and Validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Niwa, H. Comparison of the Accuracy of Two UAV-Mounted Uncooled Thermal Infrared Sensors in Predicting River Water Temperature. River Res. Appl. 2022, 38, 1660–1667. [Google Scholar] [CrossRef]
- Bayerische Vermessungsverwaltung. Digitales Orthophoto DOP40 (WMS); Bayerische Vermessungsverwaltung: München, Germany, 2022.
- LDBV. LIDAR Point Cloud of Bavaria; LBDV: München, Germany, 2024. [Google Scholar]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.; Nieto, H.; Coopmans, C. Behavior of Vegetation/Soil Indices in Shaded and Sunlit Pixels and Evaluation of Different Shadow Compensation Methods Using UAV High-Resolution Imagery over Vineyards. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III, Orlando, FL, USA, 16–17 April 2018; Volume 10664, p. 1066407. [Google Scholar]
- Zhang, L.; Sun, X.; Wu, T.; Zhang, H. An Analysis of Shadow Effects on Spectral Vegetation Indexes Using a Ground-Based Imaging Spectrometer. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2188–2192. [Google Scholar] [CrossRef]
- Morgan-Wall, T. Rayshader: Create Maps and Visualize Data in 2D and 3D; R Foundation: Indianapolis, IN, USA, 2024. [Google Scholar]
- Otsu, K.; Pla, M.; Duane, A.; Cardil, A.; Brotons, L. Estimating the Threshold of Detection on Tree Crown Defoliation Using Vegetation Indices from UAS Multispectral Imagery. Drones 2019, 3, 80. [Google Scholar] [CrossRef]
- Hashim, H.; Abd Latif, Z.; Adnan, N.A. Urban Vegetation Classification with NDVI Threshold Value Method with Very High Resolution (VHR) Pleiades Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W16, 237–240. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-Dependent Interactions between Tree Canopy Cover and Impervious Surfaces Reduce Daytime Urban Heat during Summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef]
- EEA. Imperviousness Density 2018 (Raster 10 m), Europe, 3-Yearly, Aug. 2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar]
- McGILL, R.; Tukey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16. [Google Scholar] [CrossRef]
- Chambers, J.M. Graphical Methods for Data Analysis; Chapman and Hall/CRC: New York, NY, USA, 1983; ISBN 978-1-351-07230-4. [Google Scholar]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of Street Trees in Mitigating Effects of Heat and Drought at Highly Sealed Urban Sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Xu, L. The Relationship between Land Surface Temperature and NDVI with Remote Sensing: Application to Shanghai Landsat 7 ETM+ Data. Int. J. Remote Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- Adams, M.P.; Smith, P.L. A Systematic Approach to Model the Influence of the Type and Density of Vegetation Cover on Urban Heat Using Remote Sensing. Landsc. Urban Plan. 2014, 132, 47–54. [Google Scholar] [CrossRef]
- De Castro, L.R. spANOVA:Biblioteca para Análise de Variância de Experimentos com Dependência Espacial em Ambiente R. Master’s Dissertation, University Federal de Lavras, Lavras, Brazil, 2019. [Google Scholar]
- Scolforo, H.F.; Scolforo, J.R.S.; De Mello, J.M.; Filho, A.C.F.; Rossoni, D.F.; Altoé, T.F.; Oliveira, A.D.; De Lima, R.R. Autoregressive Spatial Analysis and Individual Tree Modeling as Strategies for the Management of Eremanthus Erythropappus. J. For. Res. 2016, 27, 595–603. [Google Scholar] [CrossRef]
- Long, D.S. Spatial Autoregression Modeling of Site-Specific Wheat Yield. Geoderma 1998, 85, 181–197. [Google Scholar] [CrossRef]
- De Castro, L.R.; De Lima, R.R.; Rossoni, D.F.; Nogueira, C.H. spANOVA: Spatial Analysis of Field Trials Experiments Using Geostatistics and Spatial Autoregressive Model 2021. Available online: https://CRAN.R-project.org/package=spANOVA (accessed on 6 April 2024).
- Mendiburu, F. HSD.Test Function—Rdocumentation. Available online: https://www.rdocumentation.org/packages/agricolae/versions/1.3-7/topics/HSD.test (accessed on 3 June 2024).
- Zandler, H.; Faryabi, S.P.; Ostrowski, S. Contributions to Satellite-Based Land Cover Classification, Vegetation Quantification and Grassland Monitoring in Central Asian Highlands Using Sentinel-2 and MODIS Data. Front. Environ. Sci. 2022, 10, 684589. [Google Scholar] [CrossRef]
- Zandler, H.; Senftl, T.; Vanselow, K.A. Reanalysis Datasets Outperform Other Gridded Climate Products in Vegetation Change Analysis in Peripheral Conservation Areas of Central Asia. Sci. Rep. 2020, 10, 22446. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Cammarota, C.; Pinto, A. Variable Selection and Importance in Presence of High Collinearity: An Application to the Prediction of Lean Body Mass from Multi-Frequency Bioelectrical Impedance. J. Appl. Stat. 2021, 48, 1644–1658. [Google Scholar] [CrossRef]
- Zandler, H.; Haag, I.; Samimi, C. Evaluation Needs and Temporal Performance Differences of Gridded Precipitation Products in Peripheral Mountain Regions. Sci. Rep. 2019, 9, 15118. [Google Scholar] [CrossRef]
- Sanusi, R.; Livesley, S.J. London Plane Trees (Platanus × Acerifolia) before, during and after a Heatwave: Losing Leaves Means Less Cooling Benefit. Urban For. Urban Green. 2020, 54, 126746. [Google Scholar] [CrossRef]
- Hesslerová, P.; Pokorný, J.; Brom, J.; Rejšková-Procházková, A. Daily Dynamics of Radiation Surface Temperature of Different Land Cover Types in a Temperate Cultural Landscape: Consequences for the Local Climate. Ecol. Eng. 2013, 54, 145–154. [Google Scholar] [CrossRef]
- Hesslerová, P.; Pokorný, J.; Huryna, H.; Seják, J.; Jirka, V. The Impacts of Greenery on Urban Climate and the Options for Use of Thermal Data in Urban Areas. Prog. Plan. 2022, 159, 100545. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Verification of Accuracy of Unmanned Aerial Vehicle (UAV) Land Surface Temperature Images Using In-Situ Data. Remote Sens. 2020, 12, 288. [Google Scholar] [CrossRef]
- Zhang; Stratopoulos; Pretzsch; Rötzer How Do Tilia Cordata Greenspire Trees Cope with Drought Stress Regarding Their Biomass Allocation and Ecosystem Services? Forests 2019, 10, 676. [CrossRef]
- Drake, J.E.; Tjoelker, M.G.; Vårhammar, A.; Medlyn, B.E.; Reich, P.B.; Leigh, A.; Pfautsch, S.; Blackman, C.J.; López, R.; Aspinwall, M.J.; et al. Trees Tolerate an Extreme Heatwave via Sustained Transpirational Cooling and Increased Leaf Thermal Tolerance. Glob. Chang. Biol. 2018, 24, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Marchin, R.M.; Backes, D.; Ossola, A.; Leishman, M.R.; Tjoelker, M.G.; Ellsworth, D.S. Extreme Heat Increases Stomatal Conductance and Drought-induced Mortality Risk in Vulnerable Plant Species. Glob. Chang. Biol. 2022, 28, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Stadt Forchheim Pressemitteilung Vom 14.07.2023: Anhaltende Hitze Und Trockenheit Führt Zu Hitzestress Bei Pflanzen Und Bäume—Press Release from July 14, 2023: Prolonged Heat and Drought Lead to Heat Stress for Plants and Trees. 2023. Available online: https://www.forchheim.de/bauen-und-wohnen-planen/natur-umwelt/oeffentliches-gruen/ (accessed on 6 April 2024).
- Nürnberger Nachrichten Hitze Setzt Dem Stadtgrün Zu—“Regen Kann Man Nicht Ersetzen”: So Geht Es Forchheims Straßenbäumen. 2022. Available online: https://www.nn.de/region/forchheim/regen-kann-man-nicht-ersetzen-so-geht-es-forchheims-strassenbaumen-1.12499107 (accessed on 6 April 2024).
- Frédette, C.; Labrecque, M.; Comeau, Y.; Brisson, J. Willows for Environmental Projects: A Literature Review of Results on Evapotranspiration Rate and Its Driving Factors across the Genus Salix. J. Environ. Manag. 2019, 246, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, E.; Moser-Reischl, A.; Honold, M.; Rahman, M.A.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Urban Environment, Drought Events and Climate Change Strongly Affect the Growth of Common Urban Tree Species in a Temperate City. Urban For. Urban Green. 2023, 88, 128083. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hartmann, C.; Moser-Reischl, A.; von Strachwitz, M.F.; Paeth, H.; Pretzsch, H.; Pauleit, S.; Rötzer, T. Tree Cooling Effects and Human Thermal Comfort under Contrasting Species and Sites. Agric. For. Meteorol. 2020, 287, 107947. [Google Scholar] [CrossRef]
- Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Growth Patterns and Effects of Urban Micro-Climate on Two Physiologically Contrasting Urban Tree Species. Landsc. Urban Plan. 2019, 183, 88–99. [Google Scholar] [CrossRef]
- Choi, T.-Y.; Moon, H.-G.; Cha, J.-G. Analysis of Surface Temperature on Urban Green Space Using Unmanned Aerial Vehicle Images—A Case of Sorasan Mt. Nature Garden, Iksan, South Korea. J. Korean Assoc. Geogr. Inf. Stud. 2017, 20, 90–103. [Google Scholar]
- Lapidot, O.; Ignat, T.; Rud, R.; Rog, I.; Alchanatis, V.; Klein, T. Use of Thermal Imaging to Detect Evaporative Cooling in Coniferous and Broadleaved Tree Species of the Mediterranean Maquis. Agric. For. Meteorol. 2019, 271, 285–294. [Google Scholar] [CrossRef]
- Urban, J.; Rubtsov, A.V.; Urban, A.V.; Shashkin, A.V.; Benkova, V.E. Canopy Transpiration of a Larix Sibiricaand Pinus Sylvestris Forest in Central Siberia. Agric. For. Meteorol. 2019, 271, 64–72. [Google Scholar] [CrossRef]
- Leuzinger, S.; Körner, C. Tree Species Diversity Affects Canopy Leaf Temperatures in a Mature Temperate Forest. Agric. For. Meteorol. 2007, 146, 29–37. [Google Scholar] [CrossRef]
- Danek, M.; Danek, T. Recent Changes in the Climate-Growth Response of European Larch (Larix decidua Mill.) in the Polish Sudetes. Trees 2022, 36, 803–817. [Google Scholar] [CrossRef]
- Song, Y.; Sass-Klaassen, U.; Sterck, F.; Goudzwaard, L.; Akhmetzyanov, L.; Poorter, L. Growth of 19 Conifer Species Is Highly Sensitive to Winter Warming, Spring Frost and Summer Drought. Ann. Bot. 2021, 128, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Gangwisch, M.; Saha, S. Crown Die-Back of Peri-Urban Forests after Combined Heatwave and Drought Was Species-Specific, Size-Dependent, and Also Related to Tree Neighbourhood Characteristics. Sci. Total Environ. 2024, 913, 169716. [Google Scholar] [CrossRef] [PubMed]
- Dienst, M.; Lindén, J.; Esper, J. Determination of the Urban Heat Island Intensity in Villages and Its Connection to Land Cover in Three European Climate Zones. Clim. Res. 2018, 76, 1–15. [Google Scholar] [CrossRef]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Dirmeyer, P.A.; McAlpine, C.; Carleton, A.M.; Hale, R.; Gameda, S.; Beltrán-Przekurat, A.; et al. Land Cover Changes and Their Biogeophysical Effects on Climate. Int. J. Climatol. 2014, 34, 929–953. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Georgiadis, T.; Orlandini, S.; Munafò, M.; Congedo, L.; Rota, P.; Zazzi, M. Urban Imperviousness Effects on Summer Surface Temperatures Nearby Residential Buildings in Different Urban Zones of Parma. Remote Sens. 2017, 10, 26. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Spangenberg, J.; Shinzato, P.; Johansson, E.; Duarte, D. The Impact of Urban Vegetation on Microclimate in Hot Humid São Paulo. In Proceedings of the PLEA2007—The 24th Conference on Passive and Low Energy Architecture, Singapore, 22–24 November 2007. [Google Scholar]
- Lobaccaro, G.; De Ridder, K.; Acero, J.A.; Hooyberghs, H.; Lauwaet, D.; Maiheu, B.; Sharma, R.; Govehovitch, B. Applications of Models and Tools for Mesoscale and Microscale Thermal Analysis in Mid-Latitude Climate Regions—A Review. Sustainability 2021, 13, 12385. [Google Scholar] [CrossRef]
- PALM Group. PALM-4U—Model for the Simulation of Urban Atmospheric Boundary Layers; PALM Group: Hanover, Germany, 2018. [Google Scholar]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative Scenarios for Ecological Urbanizations Using ENVI-Met Model. Environ. Sci. Pollut. Res. 2018, 25, 26307–26321. [Google Scholar] [CrossRef] [PubMed]
- García-Díez, M.; Lauwaet, D.; Hooyberghs, H.; Ballester, J.; De Ridder, K.; Rodó, X. Advantages of Using a Fast Urban Boundary Layer Model as Compared to a Full Mesoscale Model to Simulate the Urban Heat Island of Barcelona. Geosci. Model Dev. 2016, 9, 4439–4450. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Xiao, X.; Wang, S.; Lu, X.; Wang, B. Temperature-Decreasing and Humidity-Increasing Effects of Typical Landscape Plants in Suzhou City. In Proceedings of the 2015 International Forum on Energy, Environment Science and Materials, Shenzen, China, 26–26 September 2024; Atlantis Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Miller, D.L.; Alonzo, M.; Meerdink, S.K.; Allen, M.A.; Tague, C.L.; Roberts, D.A.; McFadden, J.P. Seasonal and Interannual Drought Responses of Vegetation in a California Urbanized Area Measured Using Complementary Remote Sensing Indices. ISPRS J. Photogramm. Remote Sens. 2022, 183, 178–195. [Google Scholar] [CrossRef]
- Chen, W.; Moriya, K.; Sakai, T.; Koyama, L.; Cao, C. Temporal and Spatial Monitoring of Post-Fire Forest Dynamics Using Time-Series MODIS Data. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 772–775. [Google Scholar]
- DeFries, R.; Hansen, M.; Townshend, J. Global Discrimination of Land Cover Types from Metrics Derived from AVHRR Pathfinder Data. Remote Sens. Environ. 1995, 54, 209–222. [Google Scholar] [CrossRef]
- Hofierka, J.; Gallay, M.; Onačillová, K.; Hofierka, J. Physically-Based Land Surface Temperature Modeling in Urban Areas Using a 3-D City Model and Multispectral Satellite Data. Urban Clim. 2020, 31, 100566. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
R2 | RMSE | RMSErel | MAE | MAErel | BIAS | BIASrel | Mean Tdiff Trees | SD Trees |
---|---|---|---|---|---|---|---|---|
0.35 | 1.38 | 42.13 | 0.92 | 28.25 | 0.01 | 0.23 | 3.27 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zandler, H.; Samimi, C. Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment. Remote Sens. 2024, 16, 2059. https://doi.org/10.3390/rs16122059
Zandler H, Samimi C. Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment. Remote Sensing. 2024; 16(12):2059. https://doi.org/10.3390/rs16122059
Chicago/Turabian StyleZandler, Harald, and Cyrus Samimi. 2024. "Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment" Remote Sensing 16, no. 12: 2059. https://doi.org/10.3390/rs16122059
APA StyleZandler, H., & Samimi, C. (2024). Cooling Potential of Urban Tree Species during Extreme Heat and Drought: A Thermal Remote Sensing Assessment. Remote Sensing, 16(12), 2059. https://doi.org/10.3390/rs16122059