Augmentation Method for Weighted Mean Temperature and Precipitable Water Vapor Based on the Refined Air Temperature at 2 m above the Surface of Land from ERA5
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Construction of an Elevation Matching Bias Model
3.2. Correction of the Cusp Temperature
3.3. Refinement of the ERA5 Gridded Temperature Based on the Remove-and-Restore Model
3.4. Calculation of the and the PWV
4. Results
4.1. Elevation Matching Bias Correction of Gridded Temperature
- Solution A: without any model correction, is to directly interpolate the ERA5 grid data to the meteorological station through the bilinear interpolation method and then directly compare the interpolated values with the ground measurement;
- Solution B: with TLR correction and without EMB correction, is to firstly use Equations (1) and (2) to correct the temperature values of the four grids around the meteorological station to the station elevation and then interpolate the ERA5 2 m atmospheric temperature to the meteorological station using the bilinear interpolation method;
- Solution C is to further refine the EMB caused by ASTER GDEM matching ERA5 grid point elevation using Equations (3) and (4) based on Solution B.
4.2. Correction of FTC Temperature
4.3. Refinement of the ERA5 Gridded Temperature Model Based on the RRM
5. Discussion
6. Conclusions
- (1)
- The applicability of the ERA5 2 m atmospheric temperature gradually decreased with the increase in the terrain altitude. Without any model correction, the comparison of the measured data from the meteorological stations at the altitudes of 1533 m (the highest) and 0–50 m (the lowest) revealed that the average RMS of temperature biases were 5.28 K and 1.09 K, respectively. After the correction of the TLR and EMB, the accuracy was improved by about 68.8% and 11.3% at the elevation of 1533 m and 0–50 m, respectively. Particularly, the accuracy improvement was more significant after the correction at higher elevations.
- (2)
- It was found that the grid temperature values at UTC 1 h and UTC 9 h had abnormally large biases from the measured values by deriving the differences between neighboring epochs. Thus, we proposed an adaptive partitioning polynomial fitting correction model based on the situ data to correct the grid temperature values at these two moments. The results show that the accuracy of the temperature values at UTC 1 h and UTC 9 h was improved by about 50.2% and 49.4% after the model correction, respectively.
- (3)
- The availability of ERA5 2 m atmospheric temperature data was significantly enhanced after the RRM-based model correction, and the enhancement of the grid temperature availability was more significant at higher elevations. For the whole study area, the accuracy of the grid temperature was improved by about 18.4% on average after the refinement of the RRM. The highest meteorological station (the Taishan Mountain station) had the largest grid temperature improvement rate of 35.3%.
- (4)
- When calculating the and PWV using the overall refinement ERA5 2 m atmospheric temperature, the average RMS of the could be reduced to 0.47 K in the whole region, and for the meteorological station 54826 with high altitude, the RMS was reduced from 4.28 K to 0.62 K. For the PWV at meteorological station 54826 with a high altitude, the RMS is decreased by 69.3% from 0.662 mm to 0.203 mm, and the MXAE reduced by 2.563 mm. For the meteorological stations located at an altitude of 100–350 m, the RMS of the PWV residual decreased by 52.2% from 0.211 mm to 0.101 mm, and the MXAE reduced by 1.264 mm.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiehl, J.; Trenberth, K. Earth’s annual global mean energy budget. Bull. Am. Meteorol. Soc. 1997, 78, 197–208. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L. Climate applications of a global, 2-hourly atmospheric precipitable water dataset derived from IGS tropospheric products. J. Geod. 2009, 83, 209–217. [Google Scholar] [CrossRef]
- Franco, L.; Almeida, C.; Freire, M.; Franco, G.; Silva, S. Rainfall zoning for cocoa growing in Bahia State (Brazil) using fuzzy logic. Eng. Agrícola 2019, 39, 48–55. [Google Scholar] [CrossRef]
- Jin, S.; Luo, O. Variability and climatology of PWV from global 13-year GPS observations. IEEE T Geosci. Remote Sens. 2009, 47, 1918–1924. [Google Scholar] [CrossRef]
- Wu, J.; Su, M.; Shen, X.; Qiao, L.; Zheng, J. Assessment of the performance of GPS-PWV and rainfall event prediction by using precise products from different analysis centers. Earth Sci. Inform. 2023, 16, 2199–2210. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, C.; Xu, C.; Tan, Y.; Khan, S. A refined tomographic window for GNSS-derived water vapor tomography. Remote Sens. 2020, 12, 2999. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Near-global GPS-derived PWV and its analysis in the El Niño event of 2014–2016. J. Atmos. Sol. Terr. Phys. 2018, 179, 69–80. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.; Anthes, R.; Rocken, C.; Ware, R. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Huang, L.; Mo, Z.; Xie, S.; Liu, L.; Chen, J.; Kang, C.; Wang, S. Spatiotemporal characteristics of GNSS-derived precipitable water vapor during heavy rainfall events in Guilin, China. Satell. Navig. 2021, 2, 13. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, K.; Chai, H.; Ye, Y.; Liu, W. Characterizing extreme drought and wetness in Guangdong, China using global navigation satellite system and precipitation data. Satell. Navig. 2024, 5, 1. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, Y.; Xu, C. Global empirical model for estimating water vapor scale height. Acta Geod. Cartogr. 2015, 44, 1085–1091. (In Chinese) [Google Scholar]
- Bevis, M.; Businger, S.; Herring, T.; Rocken, C.; Anthes, R.; Ware, R. GPS meteorology: Remote sensing of the atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Niell, A.; Coster, A.; Solheim, F.; Mendes, V.; Toor, P.; Langley, R.; Upham, C. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Ocean. Technol. 2001, 18, 830–850. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Dai, A.; Van, H.; Van, B. A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res. Atmos. 2007, 112, 7529. [Google Scholar] [CrossRef]
- Vázquez, B.; Grejner-Brzezinska, D. GPS-PWV estimation and validation with radiosonde data and numerical weather prediction model in Antarctica. GPS Solut. 2013, 17, 29–39. [Google Scholar] [CrossRef]
- Huang, L.; Liu, Z.; Peng, H.; Xiong, S.; Zhu, G.; Chen, F.; Liu, L.; He, H. A Novel Global Grid Model for Atmospheric Weighted Mean Temperature in Real-Time GNSS Precipitable Water Vapor Sounding. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 3322–3335. [Google Scholar] [CrossRef]
- Huang, L.; Liu, W.; Mo, Z.; Zhang, H.; Li, J.; Chen, F.; Liu, L.; Jiang, W. A new model for vertical adjustment of precipitable water vapor with consideration of the time-varying lapse rate. GPS Solut. 2023, 27, 170. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid. Earth 2006, 111, 3629. [Google Scholar] [CrossRef]
- Hagemann, S.; Bengtsson, L.; Gendt, G. On the determination of atmospheric water vapor from GPS measurements. J. Geophys. Res. 2003, 108, 3235. [Google Scholar] [CrossRef]
- Ning, T.; Wang, J.; Elgered, G.; Dick, G.; Wickert, J.; Bradke, M.; Sommer, M.; Querel, R.; Smale, D. The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmos. Meas. Tech. 2016, 9, 79–92. [Google Scholar] [CrossRef]
- Epeloa, J.; Meza, A. Total column water vapor estimation over land using radiometer data from SAC-D/Aquarius. Adv. Space Res. 2017, 61, 1025–1034. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.; Hnilo, J.; Fiorino, M.; Potter, G. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model. Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef]
- Hiroyuki, T.; Shogo, U.; Hideyuki, N.; Justin, S.; Kim, W.; Yeager, S.; Danabasoglu, G.; Suzuki, T.; Bamber, J.; Bentsen, M.; et al. JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model. 2018, 130, 79–139. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Samuel, J.; Claudia, V.; Claudia, D.; Mirko, D.; Henny, A. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef]
- Chen, Y.; Sharma, S.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya. Atmos. Res. 2021, 250, 105365. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Vitart, F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zhang, W.; Lou, Y.; Haase, J.; Zhang, R.; Zheng, G.; Huang, J.; Shi, C.; Liu, J. The use of ground-based GPS precipitable water measurements over China to assess radiosonde and ERA-Interim moisture trends and errors from 1999 to 2015. J. Clim. 2017, 30, 7643–7667. [Google Scholar] [CrossRef]
- Reuten, C.; Moore, R.; Clarke, G. Quantifying differences between 2 m temperature observations and reanalysis pressure level temperatures in northwestern North America. J. Appl. Meteorol. Climatol. 2011, 50, 916–929. [Google Scholar] [CrossRef]
- Zhou, C.; He, Y.; Wang, K. On the suitability of current atmospheric reanalyses for regional warming studies over China. Atmos. Chem. Phys. 2018, 18, 8113–8136. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, W.; Fu, C. Calibrating and evaluating reanalysis surface temperature error by topographic correction. J. Clim. 2008, 21, 1440–1446. [Google Scholar] [CrossRef]
- Ferreira, V.; Freitas, S. Geopotential numbers from GPS satellite surveying and disturbing potential model: A case study of parana, brazil. J. Appl. Geod. 2011, 5, 155–162. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Liang, S.; Yang, Q.; Hu, M.; Feng, W. Monitoring of the temporal and spatial variation of groundwater storage in the three gorges area based on the CORS network. J. Appl. Geophys. 2017, 146, 160–166. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, B.; Xu, C.; Chen, J. Analysis of the global Tm−Ts correlation and establishment of the latitude-related linear model. Chin. Sci. Bull. 2014, 59, 2340–2347. [Google Scholar] [CrossRef]
- Jin, R.; Jin, S.; Feng, G. M_DCB: Matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut. 2012, 16, 541–548. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, L.; Li, B.; Balz, T. M_GIM: A MATLAB-based software for multi-system global and regional ionospheric modeling. GPS Solut. 2023, 27, 3709. [Google Scholar] [CrossRef]
- Dousa, J.; Elias, M. An improved model for calculating tropospheric wet delay. Geophys. Res. Lett. 2014, 41, 4389–4397. [Google Scholar] [CrossRef]
- Vaclavovic, P.; Dousa, J.; Elias, M.; Kostelecky, J. Using external tropospheric corrections to improve gnss positioning of hot-air balloon. GPS Solut. 2017, 21, 1479–1489. [Google Scholar] [CrossRef]
Elevation Interval (m) | Refinement Strategy | ||
---|---|---|---|
Solution A (K) | Solution B (K) | Solution C (K) | |
1533 | 5.28 | 3.56 | 1.98 |
150~310 | 2.07 | 1.66 | 1.57 |
100~150 | 1.72 | 1.45 | 1.43 |
50~100 | 1.33 | 1.21 | 1.18 |
0~50 | 1.09 | 1.01 | 1.01 |
Elevation Interval (m) | UTC 1 h | UTC 9 h | ||
---|---|---|---|---|
Uncorr. | Corr. | Uncorr. | Corr. | |
1533 | 5.40 | 2.35 | 3.68 | 2.06 |
150~310 | 4.07 | 2.18 | 3.37 | 1.87 |
100~150 | 3.32 | 1.99 | 3.10 | 1.65 |
50~100 | 2.88 | 1.66 | 2.66 | 1.53 |
0~50 | 2.81 | 1.59 | 2.45 | 1.36 |
Elevation Interval (m) | Corrections without Using the RRM (K) | Corrections Using the RRM (K) | Enhancement Rate (%) |
---|---|---|---|
1533 | 1.06 | 0.76 | 28.3 |
150~310 | 0.84 | 0.69 | 17.9 |
100~150 | 0.76 | 0.65 | 14.5 |
50~100 | 0.68 | 0.59 | 13.2 |
0~50 | 0.65 | 0.58 | 10.8 |
Elevation (m) | Solution A (K) | Solution B (K) | Solution C (K) | Solution D (K) | Solution E (K) |
---|---|---|---|---|---|
1533 | 5.28 | 1.98 | 1.06 | 0.76 | 5.79 |
150~310 | 2.04 | 1.55 | 0.83 | 0.58 | 2.37 |
100~150 | 1.69 | 1.44 | 0.76 | 0.54 | 1.87 |
50~100 | 1.31 | 1.16 | 0.73 | 0.53 | 1.39 |
0~50 | 1.08 | 1.02 | 0.69 | 0.48 | 1.16 |
Elevation Interval (m) | Solution A (K) | Solution B (K) | Solution C (K) | Solution D (K) |
---|---|---|---|---|
1533 | 4.28 | 1.60 | 0.82 | 0.62 |
150~310 | 1.68 | 1.27 | 0.68 | 0.48 |
100~150 | 1.39 | 1.16 | 0.63 | 0.45 |
50~100 | 1.08 | 0.96 | 0.60 | 0.42 |
0~50 | 0.88 | 0.82 | 0.58 | 0.41 |
Meteorological Stations | Without Correction (mm) | With EMB, FTC and RRM Correction (mm) | ||||
---|---|---|---|---|---|---|
RMS | MAE | MXAE | RMS | MAE | MXAE | |
54826 | 0.662 | 0.431 | 3.947 | 0.203 | 0.128 | 1.390 |
54836 | 0.221 | 0.094 | 2.532 | 0.097 | 0.048 | 1.153 |
54945 | 0.202 | 0.100 | 1.790 | 0.105 | 0.051 | 0.758 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Wang, H.; Xu, C. Augmentation Method for Weighted Mean Temperature and Precipitable Water Vapor Based on the Refined Air Temperature at 2 m above the Surface of Land from ERA5. Remote Sens. 2024, 16, 2055. https://doi.org/10.3390/rs16122055
Yue C, Wang H, Xu C. Augmentation Method for Weighted Mean Temperature and Precipitable Water Vapor Based on the Refined Air Temperature at 2 m above the Surface of Land from ERA5. Remote Sensing. 2024; 16(12):2055. https://doi.org/10.3390/rs16122055
Chicago/Turabian StyleYue, Caiya, Hu Wang, and Changhui Xu. 2024. "Augmentation Method for Weighted Mean Temperature and Precipitable Water Vapor Based on the Refined Air Temperature at 2 m above the Surface of Land from ERA5" Remote Sensing 16, no. 12: 2055. https://doi.org/10.3390/rs16122055
APA StyleYue, C., Wang, H., & Xu, C. (2024). Augmentation Method for Weighted Mean Temperature and Precipitable Water Vapor Based on the Refined Air Temperature at 2 m above the Surface of Land from ERA5. Remote Sensing, 16(12), 2055. https://doi.org/10.3390/rs16122055