Convolutional Neural Networks Applied to Antimony Quantification via Soil Laboratory Reflectance Spectroscopy in Northern Portugal: Opportunities and Challenges
Abstract
1. Introduction
2. Background
2.1. Study Area
2.2. Spectral Reflectance
2.3. Convolutional Neural Network
3. Materials and Methods
3.1. Soil Collection and Preparation
3.2. Soil Reflectance Measuring
3.3. Spectral Pre-Processing
3.3.1. Continuum Removal for Normalisation
3.3.2. Spectral Pre-Treatment
3.3.3. Convert Waveform to Spectrogram
3.4. Application of Convolutional Neural Network
4. Results
4.1. ICP-MS Analysis
4.2. Spectral Pre-Processing and CNN Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample | Sb (ppm) | As (ppm) | Pb (ppm) | Mn (ppm) | Zn (ppm) | Sample | Sb (ppm) | As (ppm) | Pb (ppm) | Mn (ppm) | Zn (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|
MDL | 0.02 | 0.2 | 0.02 | 1 | 0.2 | MDL | 0.02 | 0.2 | 0.02 | 1 | 0.2 |
RS001 | 13.38 | 25 | 33.49 | 13 | 12.7 | TP004 | 298.55 | 146.9 | 38.91 | 36 | 31.9 |
RS004 | 12.79 | 24.5 | 17.05 | 41 | 25.1 | TP007 | 80.07 | 67.9 | 21.95 | 29 | 42.9 |
RS007 | 10.71 | 18.7 | 22.23 | 68 | 24.5 | TP008 | 184.61 | 189.9 | 35.35 | 24 | 17.8 |
RS013 | 23.4 | 24.6 | 22.19 | 56 | 22.7 | TP009 | 31.39 | 46 | 18.38 | 29 | 34.6 |
RS015 | 14.55 | 16 | 28.89 | 60 | 49.1 | TP011 | 27.01 | 32.5 | 30.96 | 299 | 64.4 |
RS017 | 9.95 | 17.4 | 23.97 | 44 | 23.7 | TP013 | 251 | 167.4 | 24.41 | 17 | 30.8 |
RS019 | 9.5 | 21.3 | 21.08 | 22 | 14.7 | TP016 | 357.04 | 50.7 | 26.71 | 37 | 29.1 |
RS021 | 33.94 | 22.6 | 28.76 | 53 | 36.5 | TP017 | 1446 | 467.8 | 35.95 | 376 | 47.2 |
RS023 | 30.32 | 21 | 26.2 | 68 | 41.1 | TP027 | 52.6 | 70.3 | 25.98 | 23 | 19.7 |
RS027 | 16.87 | 17.9 | 24.53 | 51 | 31.1 | TP033 | 68.45 | 166.5 | 27.97 | 59 | 40.7 |
RS029 | 9.54 | 14.8 | 20.64 | 34 | 29.1 | TP035 | 715.49 | 78 | 49.92 | 142 | 68 |
RS031 | 25.73 | 20.3 | 20.93 | 57 | 29.8 | TP038 | 116.33 | 50 | 25.42 | 27 | 22.1 |
RS034 | 47.03 | 112.9 | 19.54 | 40 | 24.5 | TP040 | 258.4 | 74.5 | 62.37 | 63 | 26.9 |
RS037 | 575.47 | 1431.2 | 47.29 | 76 | 49.8 | TP044 | 259.18 | 65.7 | 42.6 | 844 | 146 |
RS040 | 59.42 | 28.6 | 33.97 | 261 | 50.9 | TP048 | 14.87 | 23.4 | 23.87 | 229 | 54.1 |
RS045 | 19.46 | 47.8 | 17.06 | 13 | 15 | TP049 | 207.65 | 30.9 | 25.6 | 27 | 19.7 |
RS049 | 162.61 | 111 | 24.82 | 35 | 28.3 | TP051 * | >4000 | 571.8 | 325.79 | 35 | 26.4 |
RS051 * | 2653 | 225 | 31.82 | 31 | 26.1 | TP055 | 50.4 | 27 | 25.04 | 51 | 31.3 |
RS052 | 2215 | 120.9 | 40.35 | 95 | 38.6 | TP064 | 103.82 | 34.8 | 33.38 | 106 | 65.3 |
RS055 | 50.68 | 21.2 | 12.64 | 15 | 23.6 | TP065 | 352.47 | 71 | 22.64 | 26 | 26 |
RS057 | 30.04 | 20.8 | 20.98 | 73 | 39.7 | TP068 | 217.94 | 47.9 | 20.33 | 37 | 31 |
RS061 | 82.11 | 30.8 | 25.48 | 24 | 25.9 | TP070 | 891.09 | 99.7 | 25.65 | 132 | 67 |
RS066 * | >4000 | 501.9 | 197.01 | 28 | 17.5 | TP072 | 6.3 | 16.4 | 29.52 | 57 | 33 |
RS067 * | 1103 | 129.6 | 28.5 | 18 | 21 | TP075 | 50.02 | 51.3 | 20.59 | 13 | 22.8 |
RS069 | 170.9 | 29.6 | 23.63 | 36 | 26.3 | TP077 | 258.22 | 27.4 | 22.34 | 26 | 29.4 |
RS073 | 342.44 | 84.8 | 34.84 | 27 | 36.1 | TP079 | 85.29 | 33.8 | 22.7 | 37 | 30.1 |
RS076 | 59.27 | 85.2 | 20.77 | 17 | 14 | TP082 | 31.88 | 22.8 | 14.67 | 51 | 32.7 |
RS078 * | >4000 | 680.5 | 171.89 | 143 | 51.8 | TP084 | 22.03 | 23.9 | 32.51 | 82 | 40.8 |
RS084 | 59.11 | 21.1 | 17.59 | 38 | 22.3 | TP087 | 619.71 | 92.3 | 103.39 | 78 | 38 |
RS088 | 89.74 | 34.8 | 20.79 | 30 | 22.8 | TP091 | 464.24 | 130.1 | 17.55 | 34 | 22.6 |
RS090 | 101.96 | 76.7 | 22.39 | 48 | 25 | TP093 | 38.45 | 19 | 9.26 | 767 | 128.8 |
RS094 | 79 | 91.5 | 24.93 | 29 | 26.5 | TP094 | 13.69 | 21.6 | 29.53 | 72 | 47.9 |
RS096 | 119.56 | 53.9 | 25.81 | 27 | 19.4 | TP099 * | >4000 | 1208.1 | 1040.14 | 143 | 110.8 |
RS100 | 127.62 | 43.8 | 18.54 | 35 | 28.3 | TP106 | 45.26 | 38.8 | 22.23 | 119 | 45.5 |
RS106 | 252.69 | 63.4 | 103.51 | 139 | 95.3 | TP109 * | 3786 | 240.8 | 190.75 | 387 | 55.4 |
RS108 | 61.45 | 72 | 30.65 | 28 | 28.9 | TP111 | 895 | 499 | 29.82 | 197 | 66.7 |
RS112 * | 1712 | 313.1 | 125.76 | 27 | 43.9 | TP115 | 93.15 | 37.9 | 18.36 | 271 | 76.2 |
RS115 | 118.07 | 147 | 25.04 | 49 | 33.4 | TP122 | 33.43 | 21.6 | 24.65 | 124 | 58.4 |
RS118 * | >4000 | 966.6 | 449.03 | 442 | 74.9 | TP125 | 44.84 | 19.4 | 19.12 | 44 | 22 |
RS126 | 131.8 | 48.8 | 23.47 | 22 | 25.5 | TP132 | 10.99 | 23.4 | 28.35 | 139 | 55.2 |
RS128 | 99.13 | 33.6 | 15.16 | 28 | 14.5 | TP133 | 38.25 | 25.5 | 26.92 | 61 | 33.9 |
RS129 | 565.34 | 81.6 | 359.75 | 88 | 26.7 | TP136 | 33.92 | 42 | 27.22 | 72 | 43.5 |
RS131 * | >4000 | 895.5 | 228.86 | 90 | 34.7 | TP138 | 48.68 | 17.7 | 20.54 | 41 | 42.9 |
RS134 | 151.98 | 91.1 | 37.56 | 78 | 30.1 | TP140 | 16.53 | 25.1 | 19.3 | 17 | 18.1 |
RS135 | 103.69 | 60.4 | 30.77 | 35 | 23.3 | TP147 | 26.18 | 30.8 | 43.43 | 116 | 78.4 |
RS143 * | >4000 | 671.9 | 221.68 | 163 | 41.1 | TP154 | 17.61 | 23.3 | 16.89 | 28 | 34.5 |
RS144 | 217.65 | 47.3 | 25.37 | 28 | 20.1 | TP156 | 13.44 | 27 | 15.95 | 33 | 27.4 |
RS148 | 48.3 | 36.2 | 16 | 11 | 11.1 | TP159 | 13.91 | 17.2 | 36.37 | 143 | 74.9 |
RS151 | 45.82 | 37.6 | 12.26 | 9 | 16.6 | TP167 | 11.39 | 20.3 | 12.68 | 15 | 20.6 |
RS156 * | 3500 | 361.7 | 50.46 | 46 | 28.6 | TP173 | 6.53 | 20.8 | 21.16 | 115 | 51.8 |
RS159 | 69.45 | 31 | 15.37 | 18 | 11.3 | TP175 | 16.54 | 17.9 | 15.22 | 16 | 18.2 |
RS162 | 68.91 | 28.6 | 26.37 | 55 | 34.2 | TP177 | 176.98 | 44.5 | 18.68 | 23 | 50.2 |
RS164 | 79.33 | 24.6 | 19.59 | 57 | 31.3 | TP179 | 10.66 | 50.7 | 15.55 | 17 | 23.3 |
RS169 | 72.12 | 20.7 | 15.76 | 21 | 24.8 | BLK | <0.02 | 0.3 | 0.04 | <1 | 0.3 |
Reference Material STD OREAS45H | 1.12 | 16.3 | 11.39 | 416 | 38.9 | ||||||
Reference Material STD OREAS501D | 2.56 | 13.4 | 24.43 | 379 | 81.7 | ||||||
Reference Material STD OREAS45H | 0.84 | 16.1 | 11.49 | 426 | 39.3 | ||||||
Reference Material STD OREAS501D | 2.43 | 11.4 | 24.3 | 371 | 83.2 | ||||||
Soil Pulp RS090 | 101.96 | 76.7 | 22.39 | 48 | 25 | ||||||
Soil Replicate RS090 | 96.97 | 76.5 | 22.25 | 46 | 24.9 | ||||||
Soil Pulp RS037 | 575.47 | 1431.2 | 47.29 | 76 | 49.8 | ||||||
Soil Replicate RS037 | 564.07 | 1426.4 | 48.43 | 77 | 50.8 |
References
- Li, T.; Archer, G.F.; Carapella, S.C., Jr. Antimony and Antimony Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 1–15. [Google Scholar]
- Butterman, W.; Hilliard, H. Mineral Commodity Profiles. Selenium; Rapport US Department of the Interior US Geological Survey: Online Only, 2004; pp. 1–20. [Google Scholar] [CrossRef]
- Wisniak, J. Nicolas Lémery. Rev. CENIC Cienc. Químicas 2005, 36, 123–130. [Google Scholar]
- European Commission; Directorate-General for Internal Market Industry Entrepreneurship and SMES; Grohol, M; Veeh, C. Study on the Critical Raw Materials for the EU 2023–Final Report; Publications Office of the European Union: Luxembourg, 2023; Available online: https://commission.europa.eu/about-european-commission/departments-and-executive-agencies/internal-market-industry-entrepreneurship-and-smes (accessed on 27 May 2024).
- Moolayadukkam, S.; Bopaiah, K.A.; Parakkandy, P.K.; Thomas, S. Antimony (Sb)-Based Anodes for Lithium–Ion Batteries: Recent Advances. Condens. Matter 2022, 7, 27. [Google Scholar] [CrossRef]
- He, J.; Wei, Y.; Zhai, T.; Li, H. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries. Mater. Chem. Front. 2018, 2, 437–455. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742–2747. [Google Scholar] [CrossRef] [PubMed]
- Nanni, M.R.; Demattê, J.A.M. Spectral Reflectance Methodology in Comparison to Traditional Soil Analysis. Soil Sci. Soc. Am. J. 2006, 70, 393–407. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Marcelo, V.; Pereira-Obaya, D.; García-Fernández, M.; Sanz-Ablanedo, E. Estimating Soil Properties and Nutrients by Visible and Infrared Diffuse Reflectance Spectroscopy to Characterize Vineyards. Agronomy 2021, 11, 1895. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Guo, X.; Zhang, B.; Suo, L.; Bai, H.; Luo, P. Using a Two-Stage Scheme to Map Toxic Metal Distributions Based on GF-5 Satellite Hyperspectral Images at a Northern Chinese Opencast Coal Mine. Remote Sens. 2022, 14, 5804. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis–NIR spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Mamalakis, A.; Barnes, E.A.; Ebert-Uphoff, I. Investigating the Fidelity of Explainable Artificial Intelligence Methods for Applications of Convolutional Neural Networks in Geoscience. Artif. Intell. Earth Syst. 2022, 1, e220012. [Google Scholar] [CrossRef]
- Wang, Y.; Abliz, A.; Ma, H.; Liu, L.; Kurban, A.; Halik, Ü.; Pietikäinen, M.; Wang, W. Hyperspectral Estimation of Soil Copper Concentration Based on Improved TabNet Model in the Eastern Junggar Coalfield. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning to predict soil properties from regional spectral data. Geoderma Reg. 2019, 16, e00198. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Montazerolghaem, M.; Padarian, J.; Ferguson, R.; Bailey, S.; McBratney, A.B. Convolutional neural network for simultaneous prediction of several soil properties using visible/near-infrared, mid-infrared, and their combined spectra. Geoderma 2019, 352, 251–267. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of rocks and minerals and principles of spectroscopy: Chapter 1. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 3rd ed.; Ryerson, R.A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Neiva, A.M.R.; Andráš, P.; Ramos, J.M.F. Antimony quartz and antimony–gold quartz veins from northern Portugal. Ore Geol. Rev. 2008, 34, 533–546. [Google Scholar] [CrossRef]
- Couto, H.; Roger, G.; Moëlo, Y.; Bril, H. Le district à antimoine-or Dúrico-Beirão (Portugal): Évolution paragénétique et géochimique; implications métallogéniques. Miner. Depos. 1990, 25, S69–S81. [Google Scholar] [CrossRef]
- Couto, M.H.M. As mineralizações de Sb-Au da região Dúrico-Beirã. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 1993. [Google Scholar]
- Lotze, F. Zur Gliederung der Varisziden der Iberischen Meseta. Geotekt. Forschg. 1945, 6, 78–92. [Google Scholar]
- Julivert, M.; Fontboté, J.; Ribeiro, A.; Conde, L. Mapa tectónico de la Península Ibérica, Canarias y Baleares, escala 1:1.000.000; IGME: Madrid, Spain, 1972. [Google Scholar]
- Carvalho, A. Minas de Antimónio e Ouro de Gondomar. Estudos, Notas e Trabalhos do Serviço de Fomento Mineiro (1969); Serviço de Fomento Mineiro: Lisboa, Portugal, 1969; Volume XIX, pp. 91–170. [Google Scholar]
- Frutuoso, R. Soil Sampling Campaign Report Ribeiro da Serra Mine. 2018; [Unpublished Report of Aureole project (10.54499/ERA-MIN/0005/2018)]. [Google Scholar]
- Schwartz, G.; Eshel, G.; Ben Dor, E. Reflectance spectroscopy as a tool for monitoring contaminated soils. In Soil Contamination; IntechOpen Limited: London, UK, 2011; Volume 6790. [Google Scholar]
- Dramsch, J.S. 70 years of machine learning in geoscience in review. Adv. Geophys. 2020, 61, 1–55. [Google Scholar]
- Ayodele, T.O. Machine learning overview. New Adv. Mach. Learn. 2010, 2, 9–18. [Google Scholar] [CrossRef]
- Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Roda-Robles, E. Semi-automatization of support vector machines to map lithium (Li) bearing pegmatites. Remote Sens. 2020, 12, 2319. [Google Scholar] [CrossRef]
- Santos, D.; Cardoso-Fernandes, J.; Lima, A.; Müller, A.; Brönner, M.; Teodoro, A.C. Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF pegmatites in Tysfjord, Norway. Remote Sens. 2022, 14, 3532. [Google Scholar] [CrossRef]
- Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine learning for the geosciences: Challenges and opportunities. IEEE Trans. Knowl. Data Eng. 2018, 31, 1544–1554. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Kumar Lilhore, U.; Simaiya, S.; Sharma, Y.K.; Kaswan, K.S.; Rao, K.B.; Rao, V.M.; Baliyan, A.; Bijalwan, A.; Alroobaea, R. A precise model for skin cancer diagnosis using hybrid U-Net and improved MobileNet-V3 with hyperparameters optimization. Sci. Rep. 2024, 14, 4299. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sens. 2021, 13, 4712. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- ISO/IEC 17025:2005; General Requirements for the Competence of Testing and Calibration Laboratories. 3rd ed. International Organisation for Standardisation: Geneva, Switzerland, 2017.
- Cardoso-Fernandes, J.; Silva, J.; Dias, F.; Lima, A.; Teodoro, A.C.; Barrès, O.; Cauzid, J.; Perrotta, M.; Roda-Robles, E.; Ribeiro, M.A. Tools for Remote Exploration: A Lithium (Li) Dedicated Spectral Library of the Fregeneda–Almendra Aplite–Pegmatite Field. Data 2021, 6, 33. [Google Scholar] [CrossRef]
- Pontual, S.; Merry, N.; Gamson, P. G-Mex Spectral Interpretation Field Manual; AusSpec International: Sydney, Australia, 1997. [Google Scholar]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Baíllo, A.; Chacón, J.E. Statistical outline of animal home ranges: An application of set estimation. In Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2021; Volume 44, pp. 3–37. [Google Scholar]
- Carvalho, M. Machine Learning Applied to Sb Mineralizations in Northern Portugal. Master’s Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2023. [Google Scholar]
- Rybczak, M.; Kozakiewicz, K. Deep Machine Learning of MobileNet, Efficient, and Inception Models. Algorithms 2024, 17, 96. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, S.; Ye, H.; Liao, X. A Plant Disease Classification Algorithm Based on Attention MobileNet V2. Algorithms 2023, 16, 442. [Google Scholar] [CrossRef]
- Dokl, M.; Van Fan, Y.; Vujanović, A.; Pintarič, Z.N.; Aviso, K.B.; Tan, R.R.; Pahor, B.; Kravanja, Z.; Čuček, L. A waste separation system based on sensor technology and deep learning: A simple approach applied to a case study of plastic packaging waste. J. Clean. Prod. 2024, 450, 141762. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Hodson, T.O. Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022; p. 568. [Google Scholar]
- Oliveira, D.L.B.; Pereira, L.H.d.S.; Schneider, M.P.; Silva, Y.J.A.B.; Nascimento, C.W.A.; van Straaten, P.; Silva, Y.J.A.B.; Gomes, A.d.A.; Veras, G. Bio-inspired algorithm for variable selection in i-PLSR to determine physical properties, thorium and rare earth elements in soils from Brazilian semiarid region. Microchem. J. 2021, 160, 105640. [Google Scholar] [CrossRef]
- Kopačková-Strnadová, V.; Rapprich, V.; McLemore, V.; Pour, O.; Magna, T. Quantitative estimation of rare earth element abundances in compositionally distinct carbonatites: Implications for proximal remote-sensing prospection of critical elements. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102423. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Ji, J.; Gong, P.; Liao, Q.; Tian, Q.; Ma, H. A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils. Soil Sci. Soc. Am. J. 2007, 71, 918–926. [Google Scholar] [CrossRef]
- Xuemei, L.; Jianshe, L. Using short wave visible–near infrared reflectance spectroscopy to predict soil properties and content. Spectrosc. Lett. 2014, 47, 729–739. [Google Scholar] [CrossRef]
- Gomez, C.; Viscarra Rossel, R.A.; McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 2008, 146, 403–411. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Bajorski, P.; Kazmierowski, C.; Cierniewski, J.; Piekarczyk, J.; Kusnierek, K.; Królewicz, S.; Terelak, H.; Stuczynski, T.; Maliszewska-Kordybach, B. Use of clustering with partial least squares regression for predictions based on hyperspectral data. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014. [Google Scholar] [CrossRef]
- Dunn, B.; Batten, G.; Beecher, H.G.; Ciavarella, S. The potential of near-infrared reflectance spectroscopy for soil analysis—A case study from the Riverine Plain of south-eastern Australia. Aust. J. Exp. Agric. 2002, 42, 607–614. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, T.; Pan, X. Potential of visible and near-infrared reflectance spectroscopy for the determination of rare earth elements in soil. Geoderma 2017, 306, 120–126. [Google Scholar] [CrossRef]
- Jung, A.; Vohland, M. Snapshot Hyperspectral Imaging for Soil Diagnostics–Results of a Case Study in the Spectral Laboratory. Photogramm.-Fernerkund.-Geoinf. 2014, 511–522. [Google Scholar] [CrossRef]
- Henseler, J. Partial least squares path modeling: Quo vadis? Qual. Quant. 2018, 52, 1–8. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
Element | Sb | As | Pb | Mn | Zn |
---|---|---|---|---|---|
Sb | 1 | - | - | - | - |
As | 0.9 | 1 | - | - | - |
Pb | 0.63 | 0.73 | 1 | - | - |
Mn | 0.15 | 0.28 | 0.42 | 1 | - |
Zn | 0.25 | 0.41 | 0.72 | 0.66 | 1 |
Sb (ppm) | As (ppm) | Pb (ppm) | Mn (ppm) | Zn (ppm) | |
---|---|---|---|---|---|
Mean | 132 | 69 | 30 | 75 | 36 |
Std. Deviation | 184 | 156 | 38 | 123 | 23 |
Minimum | 6.3 | 15 | 9 | 9 | 11 |
Maximum | 895 | 1431 | 360 | 844 | 146 |
Q1 | 26 | 23 | 20 | 27 | 23 |
Q2 | 59 | 34 | 24 | 39 | 30 |
Q3 | 155 | 69 | 29 | 72 | 42 |
Element | R2 | RMSE Train | RMSE Validation | Training Epochs |
---|---|---|---|---|
Sb | 0.7 | 0.0014 | 173 | 1000 |
As | 0.96 | 0.01 | 46 | 1000 |
Pb | 0.83 | 0.04 | 20 | 750 |
Mn | 0.93 | 0.0006 | 41 | 600 |
Zn | 0.78 | 0.0002 | 18 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, M.; Cardoso-Fernandes, J.; Lima, A.; Teodoro, A.C. Convolutional Neural Networks Applied to Antimony Quantification via Soil Laboratory Reflectance Spectroscopy in Northern Portugal: Opportunities and Challenges. Remote Sens. 2024, 16, 1964. https://doi.org/10.3390/rs16111964
Carvalho M, Cardoso-Fernandes J, Lima A, Teodoro AC. Convolutional Neural Networks Applied to Antimony Quantification via Soil Laboratory Reflectance Spectroscopy in Northern Portugal: Opportunities and Challenges. Remote Sensing. 2024; 16(11):1964. https://doi.org/10.3390/rs16111964
Chicago/Turabian StyleCarvalho, Morgana, Joana Cardoso-Fernandes, Alexandre Lima, and Ana C. Teodoro. 2024. "Convolutional Neural Networks Applied to Antimony Quantification via Soil Laboratory Reflectance Spectroscopy in Northern Portugal: Opportunities and Challenges" Remote Sensing 16, no. 11: 1964. https://doi.org/10.3390/rs16111964
APA StyleCarvalho, M., Cardoso-Fernandes, J., Lima, A., & Teodoro, A. C. (2024). Convolutional Neural Networks Applied to Antimony Quantification via Soil Laboratory Reflectance Spectroscopy in Northern Portugal: Opportunities and Challenges. Remote Sensing, 16(11), 1964. https://doi.org/10.3390/rs16111964