Improving Artificial-Intelligence-Based Individual Tree Species Classification Using Pseudo Tree Crown Derived from Unmanned Aerial Vehicle Imagery
Abstract
:1. Introduction
1.1. Major Achievements from Convolutional Neural Network (CNN), Graph Neural Network (GNN), and Their Variations
1.2. Major Achievements from RF and SVM
1.3. The Longitudinal Profile and Pseudo Tree Crown (PTC)
2. Data and Preprocessing
2.1. Study Area, Instruments, and Data Acquisition
2.2. Data Pre-Processing and Pseudo Tree Crown (PTC) Generation
3. Methodology
3.1. Pseudo Tree Crown (PTC)
3.2. Image Classifiers
3.2.1. YOLOv5 with CSPDarknet53
3.2.2. PyTorch with ResNet50
3.2.3. Tensorflow 2.0 (TF2) with ResNet50
3.2.4. Random Forest (RF)
4. Results and Discussion
4.1. DL Classifier Comparison
4.2. Classification Accuracy Assessment
4.3. Comparison of the Conventional Nadir View 2D RGB Image and PTC with the Four Classifiers
4.4. PTC Azimuth and Elevation Angle Impact Study
4.5. Analysis of the Impact of Different Spatial Resolutions on PTC
4.6. Other Findings
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
CNN | convolutional neural network |
DL | deep learning |
GNN | graph neural network |
ML | machine learning |
MLP | multilayer perception |
PTC | pseudo tree crown |
SSPCNN | spectral-spatial parallel convolutional neural network |
SVM | support vector machine |
UAV | unmanned aerial vehicle |
ITS | individual tree species |
References
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef]
- Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurish, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H.; et al. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [Google Scholar] [CrossRef]
- Trisasongko, B.H.; Paull, D. A review of remote sensing applications in tropical forestry with a particular emphasis in the plantation sector. Geocarto Int. 2018, 35, 317–339. [Google Scholar] [CrossRef]
- Gyamfi-Ampadu, E.; Gebreslasie, M. Two Decades Progress on the Application of Remote Sensing for Monitoring Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. [Google Scholar] [CrossRef]
- Slavik, M.; Kuzelka, K.; Modlinder, R.; Surovy, P. Spatial Analysis of Dense LiDAR Point Clouds for Tree Species Group Classification Using Individual Tree Metrics. Forests 2023, 14, 1581. [Google Scholar] [CrossRef]
- Gao, C.; Zheng, Y.; Li, N.; Li, Y.; Qin, Y.; Piao, J.; Quan, Y.; Chang, J.; Jin, D.; He, X.; et al. A Survey of Graph Neural Networks for Recommender Systems: Challenges, Methods, and Directions. ACM Trans. Recomm. Syst. 2023, 1, 1–51. [Google Scholar] [CrossRef]
- He, T.; Zhou, H.; Xu, C.; Hu, J.; Xue, X.; Xu, L.; Lou, X.; Zeng, K.; Wang, Q. Deep Learning in Forest Tree Species Classification Using Sentinel-2 on Google Earth Engine: A Case Study of Qingyuan County. Sustainability 2023, 15, 2741. [Google Scholar] [CrossRef]
- Liu, P.; Ren, C.; Wang, Z.; Jia, M.; Yu, W.; Ren, H.; Xia, C. Evaluating the Potential of Sentinel-2 Time Series Imagery and Machine Learning for Tree Species Classification in a Mountainous Forest. Remote Sens. 2024, 16, 293. [Google Scholar] [CrossRef]
- Liu, H.; Su, X.; Zhang, C.; An, H. Landscape tree species recognition using RedEdge-MX: Suitability analysis of two different texture extraction forms under MLC and RF supervision. Open Geosci. 2022, 14, 985–994. [Google Scholar] [CrossRef]
- Freeman, E.A.; Moisen, G.G.; Frescino, T.S. Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in Random Forest models of tree species distributions in Nevada. Ecol. Model. 2012, 233, 1–10. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Qin, Y.; Chi, M.; Liu, X.; Zhang, Y.; Zeng, Y.; Zhao, Z.; Hinton, G.E. Classification of high resolution urban remote sensing images using deep networks by integration of social media photos. In Proceedings of the IGARSS 2018 (IEEE International Geoscience and Remote Sensing Symposium), Valencia, Spain, 22–27 July 2018; pp. 7243–7446. [Google Scholar]
- Marrs, J.; Ni-Meister, W. Machine Learning Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data. Remote Sens. 2019, 11, 819. [Google Scholar] [CrossRef]
- Egli, S.; Hopke, M. CNN-Based Tree Species Classification Using High Resolution RGB Image Data from Automated UAV Observations. Remote Sens. 2020, 12, 3892. [Google Scholar] [CrossRef]
- Li, H.; Hu, B.; Li, Q.; Jing, L. CNN-based tree species classification using airborne lidar data and high-resolution satellite image. In Proceedings of the IGARSS 2020 (IEEE International Geoscience and Remote Sensing Symposium), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 2679–2682. [Google Scholar]
- Liang, J.; Li, P.; Zhao, H.; Han, L.; Qu, M. Forest species classification of UAV hyperspectral image using deep learning. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7126–7130. [Google Scholar]
- Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks. Remote Sens. 2020, 12, 1070. [Google Scholar] [CrossRef]
- Plesoiamu, A.; Stupariu, M.; Sandric, I.; Patru-Stupariu, I.; Dragut, L. Individual Tree-Crown Detection and Species Classification in Very High-Resolution Remote Sensing Imagery Using a Deep Learning Ensemble Model. Remote Sens. 2020, 12, 2426. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, D.; Lv, J.; Li, J. ACTL: Asymmetric Convolutional Transfer Learning for Tree Species Identification Based on Deep Neural Network. IEEE Access 2021, 9, 13643–13654. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, K.; Zhu, Y.; Wang, X.; Yun, T. Individual tree crown segmentation directly from UAV-borne LiDAR data using the PointNet of deep learning. Forest 2021, 12, 131. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Im, J.; Zhao, Y.; Zhen, Z. A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR. Ecol. Indic. 2024, 159, 111608. [Google Scholar] [CrossRef]
- Hou, C.; Liu, Z.; Chen, Y.; Wang, S.; Liu, A. Tree Species Classification from Airborne Hyperspectral Images Using Spatial–Spectral Network. Remote Sens. 2023, 15, 5679. [Google Scholar] [CrossRef]
- Michałowska, M.; Rapiński, J.; Janicka, J. Tree species classification on images from airborne mobile mapping using ML.NET. Eur. J. Remote Sens. 2023, 56, 2271651. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, H.; Hu, J.; Yu, H.; Hu, H. A Multi-Scale Convolution and Multi-Layer Fusion Network for Remote Sensing Forest Tree Species Recognition. Remote Sens. 2023, 15, 4732. [Google Scholar] [CrossRef]
- Wang, N.; Pu, T.; Zhang, Y.; Liu, Y.; Zhang, Z. More appropriate DenseNetBL classifier for small sample tree species classification using UAV-based RGB imagery. Heliyon 2023, 9, e20467. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.; Lim, J.; Kim, K.; Yim, K.; Lee, W. Deepening the Accuracy of Tree Species Classification: A Deep Learning-Based Methodology. Forests 2023, 14, 1602. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Lian, Z.; Yang, N. Semi-Supervised Tree Species Classification for Multi-Source Remote Sensing Images Based on a Graph Convolutional Neural Network. Forests 2023, 14, 1211. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, X.; Gao, Y.; Zhang, Y.; Lin, G. Tree Species Classification in UAV Remote Sensing Images Based on Super-Resolution Reconstruction and Deep Learning. Remote Sens. 2023, 15, 2942. [Google Scholar] [CrossRef]
- Chen, X.; Shen, X.; Cao, L. Tree Species Classification in Subtropical Natural Forests Using High-Resolution UAV RGB and SuperView-1 Multispectral Imageries Based on Deep Learning Network Approaches: A Case Study within the Baima Snow Mountain National Nature Reserve, China. Remote Sens. 2023, 15, 2697. [Google Scholar] [CrossRef]
- Lee, E.; Baek, W.; Jung, H. Mapping Tree Species Using CNN from Bi-Seasonal High-Resolution Drone Optic and LiDAR Data. Remote Sens. 2023, 15, 2140. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S.; Tao, Y.; Sun, J.; Liu, X.; Yu, P.; Wang, T. DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (WSDM ’23), Singapore, 27 February–3 March 2023. [Google Scholar] [CrossRef]
- Cini, A.; Marisca, I.; Bianchi, F.; Alippi, C. Scalable Spatiotemporal Graph Neural Networks. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024. [Google Scholar]
- Sun, P.; Yuan, X.; Li, D. Classification of Individual Tree Species Using UAV LiDAR Based on Transformer. Forests 2023, 14, 484. [Google Scholar] [CrossRef]
- Lei, Z.; Li, H.; Zhao, J.; Jing, L.; Tang, Y.; Wang, H.J. Individual Tree Species Classification Based on a Hierarchical Convolutional Neural Network and Multitemporal Google Earth Images. Remote Sens. 2023, 14, 5124. [Google Scholar] [CrossRef]
- Allen, M.; Grieve, S.; Owen, H.; Lines, E. Tree species classification from complex laser scanning data in Mediterranean forests using deep learning. Methods Ecol. Evol. 2023, 14, 1657–1667. [Google Scholar] [CrossRef]
- Li, Y.; Chai, G.; Wang, Y.; Lei, L.; Zhang, X. Ace R-CNN: An attention complementary and edge detection-based instance segmentation algorithm for individual tree species identification using UAV RGB images and LiDAR data. Remote Sens. 2022, 14, 3035. [Google Scholar] [CrossRef]
- Li, M.; Zhou, G.; Li, Z. Fast recognition system for Tree images based on dual-task Gabor convolutional neural network. Multimed. Tools Appl. 2022, 81, 28607–28631. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E.; Cho, M.A. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. J. Appl. Remote Sens. 2013, 17, 073480. [Google Scholar] [CrossRef]
- Rochdi, N.; Yang, X.; Staenz, K.; Patterson, S.; Purdy, B. Mapping Tree Species in a Boreal Forest Area using RapidEye and LiDAR Data. In Proceedings of the Earth Resources and Environmental Remote Sensing 2014 SPIE, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar] [CrossRef]
- Zhao, D.; Pang, Y.; Liu, L.; Li, Z. Individual Tree Classification Using Airborne LiDAR and Hyperspectral Data in a Natural Mixed Forest of Northeast China. Forests 2020, 11, 303. [Google Scholar] [CrossRef]
- Airlangga, G. Comparative Analysis of Machine Learning Models for Tree Species Classification from UAV LiDAR Data. Bul. Ilm. Sarj. Tek. Elektro 2024, 6, 54–62. [Google Scholar] [CrossRef]
- Seeley, M.; Vaughn, N.; Shanks, B.; Martin, R.; König, M.; Asner, P. Classifying a Highly Polymorphic Tree Species across Landscapes Using Airborne Imaging Spectroscopy. Remote Sens. 2023, 15, 4365. [Google Scholar] [CrossRef]
- Rina, S.; Ying, H.; Shan, Y.; Du, W.; Liu, Y.; Li, R.; Deng, D. Application of Machine Learning to Tree Species Classification Using Active and Passive Remote Sensing: A Case Study of the Duraer Forestry Zone. Remote Sens. 2023, 15, 2596. [Google Scholar] [CrossRef]
- Cha, S.; Lim, J.; Kim, K.; Yim, J.; Lee, W. Uncovering the Potential of Multi-Temporally Integrated Satellite Imagery for Accurate Tree Species Classification. Forests 2023, 14, 746. [Google Scholar] [CrossRef]
- Usman, M.; Ejaz, M.; Nichol, J.; Farid, M.; Abbas, S.; Khan, M. A Comparison of Machine Learning Models for Mapping Tree Species Using WorldView-2 Imagery in the Agroforestry Landscape of West Africa. Int. J. Geo-Inf. 2023, 12, 142. [Google Scholar] [CrossRef]
- Wang, N.; Wang, G. Tree species classification using machine learning algorithms with OHS-2 hyperspectral image. Sci. For. 2023, 51, e3991. [Google Scholar] [CrossRef]
- Kluczek, M.; Zagajewski, M.; Zwijacz-Kozica, T. Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and Airborne HySpex Hyperspectral Imagery. Remote Sens. 2023, 15, 844. [Google Scholar] [CrossRef]
- Fourier, R.A.; Edwards, G.; Eldridge, N.R. A catalogue of potential spatial discriminators for high spatial resolution digital images of individual crowns. Can. J. Remote Sens. 1995, 3, 285–298. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, B. Individual Urban Tree Species Classification Using Very High Spatial Resolution Airborne Multi-Spectral Imagery Using Longitudinal Profiles. Remote Sens. 2012, 4, 1741–1757. [Google Scholar] [CrossRef]
- Balkenhol, L.; Zhang, K. Identifying Individual Tree Species Structure with High-Resolusion Hyperspectral Imagery Using a Linear Interpretation of the Spectral Signature. In Proceedings of the 38th Canadian Symposium on Remote Sensing, Montreal, QC, Canada, 20–22 June 2017. [Google Scholar]
- Miao, S.; Zhang, K.; Liu, J. An AI-based Tree Species Classification Using a 3D Tree Crown Model Derived From UAV Data. In Proceedings of the 44th Canadian Symposium on Remote Sensing, Yellowknife, NWT, Canada, 19–22 June 2023. [Google Scholar]
- Joche, G. YOLOv5 by Ultralytics, License AGPL-3.0, v7.0. 2020. Available online: https://github.com/ultralytics/yolov5 (accessed on 8 May 2024).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NY, USA, 27–30 June 2016. [Google Scholar]
- Wang, C.; Liao, H. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
Paper | Methodology | Data | Date |
---|---|---|---|
Ma et al., 2024 [22] | CNN+CBAM | UAV LiDAR | January 2024 |
Hou et al., 2023 [23] | SimAM attention mechanism | Airborne hyperspectral | December 2023 |
Michalowska et al., 2023 [24] | ML.NET | Airborne Mobile | October 2023 |
Hou et al., 2023a [25] | MCMFN/ResNet50 | RGB+NIR aerial | September 2023 |
Wang et al., 2023 [26] | DenseNet33BL/DenseNet121 | UAV RGB | September 2023 |
Cha et al., 2023 [27] | U-net CNN | RapidEye and Sentinel-2 | August 2023 |
Wang et al., 2023a [28] | GNN/CCA | HSI and MSI | June 2023 |
Huang et al., 2023 [29] | ResNet50/ConvNeXt/ViT-B/Swin-T | UAV | June 2023 |
Chen et al., 2023 [30] | MobileNetV2/ResNet34/DenseNet121/RF | UAV/SuperView-1 | May 2023 |
Lee et al., 2023 [31] | CNN | Drone Optic and LiDAR | April 2023 |
Yang et al., 2023 [32] | GNN/DGRec | general | March 2023 |
He et al., 2023 [7] | ResNet50 with PCA and NDVI | Sentinel-2 | February 2023 |
Cini et al., 2023 [33] | Scalable GNN | general | February 2023 |
Sun et al., 2023 [34] | Transformer | UAV LiDAR | February 2023 |
Lei et al., [35] | H-CNN | Google Images | October 2022 |
Allen et al., 2023 [36] | CNN (ResNet-18/4) | 2D Segment of LiDAR | August 2022 |
Li et al., 2022b [37] | ACE R-CNN | UAV RGB and LiDAR | June 2022 |
Li et al., 2022a [38] | Gabor CNN | Images | March 2022 |
Paper | Methodology | Data | Date |
---|---|---|---|
Airlangga G. 2024 [42] | RF/SVM | UAV LiDAR | March 2024 |
Liu et al., 2024 [8] | RF/SVM | Sentinel-2 | January 2024 |
Seeley et al., 2023 [43] | SMA/SVM | Airborne | September 2023 |
Rina et al., 2023 [44] | RF/SVM/CHM/CART | UAV/LiDAR | May 2023 |
Cha et al., 2023a [45] | RF | RapidEye/Sentinel-2 | April 2023 |
Usman et al., 2023 [46] | XGB/RF/SVM | WorldView 2 | March 2023 |
Wang and Wang 2023 [47] | RF/SVM/SAM | OHS-2 | March 2023 |
Kluczek et al., 2023 [48] | RF/SVM | Sentinel-2/ALS | February 2023 |
Average Training Time | Average Classification Accuracy | |
---|---|---|
PyTorch | 0 h:44 m:23 s | 0.9826 |
TF2 | 1 h:41 m:53 s | 0.9200 |
YOLOv5 | 1 h:17 m:07 s | 0.9748 |
Species | PyTorch | TF2.0 | YOLOv5 | RF |
---|---|---|---|---|
Archontophoenix alexandrae (Aa) | 1.000 | 0.902 | 0.950 | 0.769 |
Mango indica (Mi) | 0.971 | 0.735 | 0.620 | 0.750 |
Livistona chinensis (Lc) | 1.000 | 0.846 | 0.760 | 0.579 |
Ficus microcarpa (Fm) | 0.935 | 0.790 | 0.524 | 0.400 |
Sago palm (Sp) | 1.000 | 1.000 | 0.800 | 1.000 |
Species | PyTorch | TF2.0 | YOLOv5 | RF |
---|---|---|---|---|
Archontophoenix alexandrae (Aa) | 1.000 | 0.938 | 0.826 | 0.962 |
Mango indica (Mi) | 0.943 | 0.926 | 0.722 | 0.857 |
Livistona chinensis (Lc) | 1.000 | 0.815 | 0.760 | 0.423 |
Ficus microcarpa (Fm) | 0.967 | 0.556 | 0.579 | 0.273 |
Sago palm (Sp) | 1.000 | 1.000 | 1.000 | 0.727 |
Species | PyTorch | TF2.0 | YOLOv5 | RF |
---|---|---|---|---|
Archontophoenix alexandrae (Aa) | 1.000 | 0.945 | 0.970 | 0.828 |
Mango indica (Mi) | 0.993 | 0.920 | 0.915 | 0.928 |
Livistona chinensis (Lc) | 1.000 | 0.965 | 0.931 | 0.929 |
Ficus microcarpa (Fm) | 0.986 | 0.965 | 0.893 | 0.923 |
Sago palm (Sp) | 1.000 | 1.000 | 0.991 | 1.000 |
Species | PyTorch | TF2.0 | YOLOv5 | RF |
---|---|---|---|---|
Archontophoenix alexandrae (Aa) | 1.000 | 0.984 | 0.946 | 0.989 |
Mango indica (Mi) | 0.996 | 0.991 | 0.975 | 0.983 |
Livistona chinensis (Lc) | 1.000 | 0.979 | 0.969 | 0.942 |
Ficus microcarpa (Fm) | 0.993 | 0.952 | 0.960 | 0.940 |
Sago palm (Sp) | 1.000 | 1.000 | 1.000 | 0.985 |
Species | PyTorch | TF2.0 | YOLOv5 | RF |
---|---|---|---|---|
Archontophoenix alexandrae (Aa) | 1.000 | 0.968 | 0.905 | 0.980 |
Mango indica (Mi) | 0.985 | 0.962 | 0.839 | 0.923 |
Livistona chinensis (Lc) | 1.000 | 0.898 | 0.864 | 0.594 |
Ficus microcarpa (Fm) | 0.967 | 0.714 | 0.733 | 0.429 |
Sago palm (Sp) | 1.000 | 1.000 | 1.000 | 0.800 |
Classifier | Nadir View | PTC |
---|---|---|
PyTorch | 0.867 | 0.982 |
TF2 | 0.792 | 0.920 |
YOLOv5 | 0.833 | 0.974 |
RF | 0.628 | 0.707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, S.; Zhang, K.; Zeng, H.; Liu, J. Improving Artificial-Intelligence-Based Individual Tree Species Classification Using Pseudo Tree Crown Derived from Unmanned Aerial Vehicle Imagery. Remote Sens. 2024, 16, 1849. https://doi.org/10.3390/rs16111849
Miao S, Zhang K, Zeng H, Liu J. Improving Artificial-Intelligence-Based Individual Tree Species Classification Using Pseudo Tree Crown Derived from Unmanned Aerial Vehicle Imagery. Remote Sensing. 2024; 16(11):1849. https://doi.org/10.3390/rs16111849
Chicago/Turabian StyleMiao, Shengjie, Kongwen (Frank) Zhang, Hongda Zeng, and Jane Liu. 2024. "Improving Artificial-Intelligence-Based Individual Tree Species Classification Using Pseudo Tree Crown Derived from Unmanned Aerial Vehicle Imagery" Remote Sensing 16, no. 11: 1849. https://doi.org/10.3390/rs16111849
APA StyleMiao, S., Zhang, K., Zeng, H., & Liu, J. (2024). Improving Artificial-Intelligence-Based Individual Tree Species Classification Using Pseudo Tree Crown Derived from Unmanned Aerial Vehicle Imagery. Remote Sensing, 16(11), 1849. https://doi.org/10.3390/rs16111849