Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection
Abstract
:1. Introduction
2. A Concise Introduction to TIR Remote Sensing Technology
3. Fundamental Principles of TIR Remote Sensing for Geothermal Resource Detection
3.1. The Inversion Methodology for Retrieving LST
3.2. LST Inversion Algorithms
3.2.1. Radiative Transfer Equation (RTE) Method
3.2.2. Single-Window Algorithm
3.2.3. Generalized Single-Channel Algorithm
3.2.4. Practical Single-Channel Algorithm
3.2.5. Split-Window Algorithm
4. The Application of TIR Remote Sensing Technology in Geothermal Resource Exploration
4.1. The Integration of TIR Remote Sensing Technology with Geological Structure Interpretation
4.2. The Integration of TIR Remote Sensing Technology and Geophysical Methods
4.3. The Integration of TIR Remote Sensing Technology with Geochemical Methods
5. The Main Problems with Detecting Geothermal Resources Using TIR Remote Sensing Technology
- (1)
- The long-term series of ground temperature anomaly observations play a significant role in enhancing the accuracy of geothermal resource detection using TIR remote sensing [57,59,67]. Initially, these observations contribute to the compilation of a comprehensive ground temperature database, thereby furnishing a critical benchmark against which remotely sensed surface temperature retrievals can be validated and refined. Secondly, the meticulous tracking and interpretation of temporal–spatial variations in ground temperature data, with an emphasis on identifying persistent or cyclic temperature anomalies, play a pivotal role in unearthing likely zones of geothermal activity. Moreover, sustained geothermal monitoring plays a crucial role in assessing the stability and dynamic characteristics of geothermal systems, an understanding that is vital for devising strategies conducive to the sustainable exploitation of geothermal energy. Additionally, integrating empirical ground temperature measurements with remotely sensed data significantly enhances the precision of surface temperature inversions. This integrated approach allows for comparative analyses that can pinpoint regions exhibiting geothermal anomalies, thus facilitating the accurate localization of geothermal resource distributions. Furthermore, leveraging such data enables researchers to delve deeper into the actual potential and size of geothermal reserves through the examination of parameters such as geothermal gradients and associated variables [59,87].
- (2)
- The current research commonly employs global or local threshold methods to extract high-temperature anomalies from remote sensing data and combines these with regional geological structural characteristics for delineating geothermal anomaly zones [49,53,62]. Furthermore, some studies have used nighttime remotely sensed data to minimize the influence of solar radiation or adopted terrain correction techniques to reduce interference caused by factors such as elevation and slope [88,89]. However, relying solely on single remote sensing techniques in geothermal exploration may lead to numerous false positives, complicating the accurate identification of genuine geothermal anomalies and increasing the workload for subsequent field verification. Currently, scholars are experimenting with more advanced methods like discriminant functions, principal component analysis (PCA), logistic regression equations, Dempster–Shafer evidence theory, and logical operator algorithms to demarcate geothermal anomaly areas [66,67,88,89]. Nonetheless, these approaches heavily rely on indirect data, possess a degree of subjectivity, require substantial professional expertise to guide their application, and often provide insufficient explanations for the formation mechanisms of geothermal anomaly regions, thereby limiting their reliability as a dependable reference in practical resource development and utilization.
- (3)
- While satellite remote sensing data can effectively be used for the large-scale detection of geothermal anomalies and provide insights into the current state and dynamic changes of geothermal activity within a region, this approach typically yields only an approximate estimation of the spatial extent of the geothermal presence. A prevalent issue in the current research is the overreliance on TIR remote sensing bands, often overlooking the importance of incorporating other spectral bands that could significantly contribute to characterizing geothermal resources. The integrated application of multi-band and multi-source remote sensing data has the potential to reveal a more comprehensive understanding of the properties and characteristics of geothermal resources [57,66,90].
- (4)
- The integration of remote sensing technology with GIS presents substantial practical utility in geothermal resource exploration [91,92,93]. This integrated approach provides extensive and multidimensional data that aid in identifying potential geothermal zones and analyzing their geothermal energy potential. However, given the diverse mechanisms driving the geothermal formation across different regions, the factors to consider when constructing predictive models can vary significantly [65,93,94,95]. A critical issue during modeling is the careful selection and quantification of relevant factors, which requires a thorough analysis and investigation [95,96]. Parameters such as geological structures, surface temperatures, geochemical indicators, and geomagnetic data may all be important variables for model development. Furthermore, the temporal and spatial resolution of the data, data quality, and errors introduced during processing can all impact the accuracy of the models. The choice of model assumptions and methods is equally crucial because these can lead to inherent biases and influence results [93]. If an inappropriate model or faulty assumptions are adopted, misleading predictions may arise, thereby potentially leading decision-makers astray with adverse effects on their decisions.
6. Summary and Prospect
- (1)
- In geothermal resource exploration, the pivotal task lies in intensifying the study of multi-source remote sensing data fusion. Due to the ill-posed nature of surface temperature inversion equations, where the spectral information is limited and assumptions about atmospheric properties or emissivity must be made, this inherently restricts the accuracy of temperature retrieval. To address this issue, it is essential to integrate various types of remote sensing data, such as high-spectral TIR imagery, and combine multiple remote sensing techniques including optical, infrared, and radar for comprehensive data fusion analysis. This approach significantly improves the accuracy and reliability of detecting geothermal resources. By merging multi-source data and fully utilizing the information gathered from different sensors, more informative insights can be obtained to mitigate the effects of uneven surface temperatures and atmospheric disturbances. Moreover, harnessing a variety of remote sensing devices to acquire high-quality data and increasing observation frequencies whenever possible allows for the capturing of more nuanced details related to geothermal resources.
- (2)
- Space analysis technology is an important component of geothermal resource exploration. Through GIS, researchers can integrate remotely sensed data with geological and geophysical parameters such as terrestrial heat flow, granite distribution, fault locations, Bouguer gravity anomalies, aeromagnetic anomalies, and depths to basement rocks. Utilizing models like information content models, evidential weight models, fuzzy logic models, and the analytic hierarchy process (AHP) for spatial modeling analysis allows for a more holistic understanding of the complexity inherent in geothermal systems. This integrated spatial analysis approach aids in the comprehensive assessment of potential geothermal zones from multiple perspectives and scales, thereby significantly enhancing the accuracy and reliability of geothermal resource detection. Moreover, conducting predictive accuracy assessments helps validate the model effectiveness and ensures the scientific validity and practical utility of the forecasting outcomes.
- (3)
- Artificial intelligence and mechanical learning technologies are driving revolutionary progress in the field of geothermal resource exploration. These technologies, which have already demonstrated significant potential in information retrieval and data mining, are now being leveraged to enhance the accuracy and efficiency of geothermal resource detection. By analyzing vast amounts of historical data through advanced learning algorithms, predictive models and classifiers can be developed to achieve precise predictions and quantitative evaluations of geothermal resource distributions. The integration of AI and machine learning into geothermal prospecting not only significantly boosts the speed of exploration but also delivers more accurate prediction outcomes, providing robust support for the development and utilization of geothermal energy, driving the field towards higher levels of sophistication and effectiveness.
- (4)
- Interdisciplinary comprehensive research is becoming increasingly important in the exploration and evaluation of geothermal resources. By strengthening interdisciplinary collaboration among fields such as geology, geophysics, geochemistry, geography, and hydrology, researchers can delve more deeply into the formation mechanisms and storage characteristics of geothermal resources, thereby significantly enhancing the accuracy of geothermal resource detection. Through the integration of theories and methods from multiple disciplines, scientists can provide a more comprehensive assessment of the potential of geothermal resources, offering more scientifically robust and reliable foundations for the development and utilization of geothermal energy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avtar, R.; Sahu, N.; Aggarwal, A.K.; Chakraborty, S.; Kharrazi, A.; Yunus, A.P.; Dou, J.; Kurniawan, T.A. Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149. [Google Scholar] [CrossRef]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- Rohit, R.V.; Vipin Raj, R.; Kiplangat, D.C.; Veena, R.; Jose, R.; Pradeepkumar, A.P.; Kumar, K.S. Tracing the evolution and charting the future of geothermal energy research and development. Renew. Sustain. Energy Rev. 2023, 184, 113531. [Google Scholar] [CrossRef]
- Ng’ethe, J.; Jalilinasrabady, S. GIS-based multi-criteria decision making under Silica Saturation Index (SSI) for selecting the best direct use scenarios for geothermal resources in Central and Southern Rift Valley, Kenya. Geothermics 2023, 109, 102656. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 2021, 90, 101915. [Google Scholar] [CrossRef]
- Jiyang, W.; Zhonghe, P.; Yuanzhi, C.; Yonghui, H.; Guangzheng, J.; Zhenneng, L.; Yanlong, K. Current state, utilization and prospective of global geothermal energy. Sci. Technol. Rev. 2023, 41, 5–11. [Google Scholar]
- Krieger, M.; Kurek, K.A.; Brommer, M. Global geothermal industry data collection: A systematic review. Geothermics 2022, 104, 102457. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Wan, G. Current situation and prospect of China’s geothermal resources. Renew. Sustain. Energy Rev. 2014, 32, 651–661. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Shi, Y.; Zhang, C.; Wang, Z.; Hu, D. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics 2019, 753, 36–48. [Google Scholar] [CrossRef]
- Van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 255–269. [Google Scholar] [CrossRef]
- Watson, K.; Kruse, F.A.; Hummer-Miller, S. Thermal infrared exploration in the Carlin Trend, northern Nevada. Geophysics 1990, 55, 70–79. [Google Scholar] [CrossRef]
- Criss, R.E.; Champion, D.E. Magnetic properties of granitic rocks from the southern half of the Idaho Batholith: Influences of hydrothermal alteration and implications for aeromagnetic interpretation. J. Geophys. Res. 1984, 89, 7061–7076. [Google Scholar] [CrossRef]
- Pastorelli, S.; Marini, L.; Hunziker, J.C. Water chemistry and isotope composition oftheAcquarossa thermal system, Ticino, Switzerland. Geothermics 1999, 28, 75–93. [Google Scholar] [CrossRef]
- Rodgers, J. The Epistemology of Mathematical and Statistical Modeling A Quiet Methodological Revolution. Am. Psychol. 2010, 65, 1–12. [Google Scholar] [CrossRef]
- Fritz, C.E.; Schuurman, N.; Robertson, C.; Lear, S. A scoping review of spatial cluster analysis techniques for point-event data. Geospat. Health 2013, 7, 183–198. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Caselles, V.; Coll, C. Theoretical split-window algorithms for determining the actual surface temperature. Il Nuovo Cimento C 1993, 16, 219–236. [Google Scholar] [CrossRef]
- Bian, T.; Ren, G.; Yue, Y. Effect of Urbanization on Land-Surface Temperature at an Urban Climate Station in North China. Bound.-Layer Meteorol. 2017, 165, 553–567. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Xiao, R.; Chen, Y.; Liu, X.; Zhang, X. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Orhan, O.Z.; Ekercin, S.; Dadaser-Celik, F. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey. Sci. World J. 2014, 2014, 142939. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.-W.; Shi, J.-J.; Huang, J.-F. Soil Moisture Monitoring Based on Land Surface Temperature-Vegetation Index Space Derived from MODIS Data. Pedosphere 2014, 24, 450–460. [Google Scholar] [CrossRef]
- Chan, H.-P.; Chang, C.-P.; Dao, P.D. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan. Pure Appl. Geophys. 2018, 175, 303–323. [Google Scholar] [CrossRef]
- Eskandari, A.; De Rosa, R.; Amini, S. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. J. Volcanol. Geotherm. Res. 2015, 306, 41–57. [Google Scholar] [CrossRef]
- Ji, L.; Xu, J.; Lin, X.; Luan, P. Application of satellite thermal infrared remote sensing in monitoring magmatic activity of Changbaishan Tianchi volcano. Chin. Sci. Bull. 2010, 55, 2731–2737. [Google Scholar] [CrossRef]
- Mia, M.B.; Fujimitsu, Y. Monitoring heat losses using Landsat ETM+ thermal infrared data—A case study at Kuju fumarolic area in Japan. Acta Geophys. 2013, 61, 1262–1278. [Google Scholar] [CrossRef]
- Calvin, W.M.; Littlefield, E.F.; Kratt, C. Remote sensing of geothermal-related minerals for resource exploration in Nevada. Geothermics 2015, 53, 517–526. [Google Scholar] [CrossRef]
- Gates, D.M. Winter Thermal Radiation Studies in Yellowstone Park. Science 1961, 134, 32–35. [Google Scholar] [CrossRef]
- Lee, K. Analysis of thermal infrared imagery of the Black Rock Desert geothermal area. Q. Colo. Sch. Mines 1978, 73. [Google Scholar]
- Hodder, D.T. Application of remote sensing to geothermal prospecting. Geothermics 1970, 2, 368–380. [Google Scholar] [CrossRef]
- Gomez Valle, R.; Friedman, J.D.; Gawarecki, S.J.; Banwell, C.J. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico. Geothermics 1970, 2, 381–398. [Google Scholar] [CrossRef]
- Sekioka, M. Geothermal observations by use of a helicopter-borne remote sensing system. Remote Sens. Environ. 1985, 18, 193–203. [Google Scholar] [CrossRef]
- Zhonghe, P.; Shaopeng, H.; Shengbiao, H.; Ping, Z.; Lijuan, H. Geothermal studies in China: Progress and prospects 1995–2014. Chin. J. Geol. (Sci. Geol. Sin.) 2014, 49, 719–727. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Houborg, R.; Starks, P.J.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Vauclin, M.; Vieira, S.R.; Bernard, R.; Hatfield, J.L. Spatial variability of surface temperature along two transects of a bare soil. Water Resour. Res. 1982, 18, 1677–1686. [Google Scholar] [CrossRef]
- Prata, A.J.; Caselles, V.; Coll, C.; Sobrino, J.A.; Ottlé, C. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sens. Rev. 1995, 12, 175–224. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Zhengming, W.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; Ninyerola, M.; Pons, X. Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. J. Geophys. Res. Atmos. 2009, 114, D08103. [Google Scholar] [CrossRef]
- Zhaoliang, L.; Sibo, D.; Bohui, T.; Hua, W.; Huazhong, R.; Guangjian, Y.; Ronglin, T.; Pei, L. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Natl. Remote Sens. Bull. 2016, 20, 899–920. [Google Scholar] [CrossRef]
- Shivers, S.W.; Roberts, D.A.; McFadden, J.P. Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Remote Sens. Environ. 2019, 222, 215–231. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Sibo, D.; Chen, R.; Zhaoliang, L.; Mengmeng, W.; Hanqiu, X.; Hua, L.; Penghai, W.; Wenfeng, Z.; Ji, Z.; Wei, Z.; et al. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. Natl. Remote Sens. Bull. 2021, 25, 1591–1617. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Yao, Y. Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images. Sensors 2019, 19, 5049. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, N.; Nan, P.; Chai, L. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 552–559. [Google Scholar] [CrossRef]
- Peleli, S.; Kouli, M.; Marchese, F.; Lacava, T.; Vallianatos, F.; Tramutoli, V. Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS—LST imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102251. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, Q.-G.; Yu, D.-H.; Yang, Q.-L.; Wang, L.; Han, T.-C.; Xu, X.-Y. Detecting daytime and nighttime land surface temperature anomalies using thermal infrared remote sensing in Dandong geothermal prospect. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 196–205. [Google Scholar] [CrossRef]
- Fahil, A.S.; Ghoneim, E.; Noweir, M.A.; Masoud, A. Integration of Well Logging and Remote Sensing Data for Detecting Potential Geothermal Sites along the Gulf of Suez, Egypt. Resources 2020, 9, 109. [Google Scholar] [CrossRef]
- Kato, S.; Miyamoto, H.; Amici, S.; Oda, A.; Matsushita, H.; Nakamura, R. Automated classification of heat sources detected using SWIR remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102491. [Google Scholar] [CrossRef]
- Sun, J.; Liu, K.; He, Q.; Yu, T.; Deng, Y. Thermal infrared remote sensing and soil gas radon for detecting blind geothermal area. Geothermics 2022, 105, 102534. [Google Scholar] [CrossRef]
- Li, X.; Jiang, G.; Tang, X.; Zuo, Y.; Hu, S.; Zhang, C.; Wang, Y.; Wang, Y.; Zheng, L. Detecting Geothermal Anomalies Using Multi-Temporal Thermal Infrared Remote Sensing Data in the Damxung–Yangbajain Basin, Qinghai–Tibet Plateau. Remote Sens. 2023, 15, 4473. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J. Volcanol. Geotherm. Res. 2012, 215–216, 61–73. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, J.; Su, H.; Bai, Q.; Liu, S.; Li, L.; Yu, Y.; Huang, Y. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature. Remote Sens. 2017, 9, 43. [Google Scholar] [CrossRef]
- Xidan, Z.; Lixin, X.; Nannan, Y.; Xiaodong, W.; Zhiyong, W.; Xiao, C. Application of Thermal Infrared Remote Sensing Technology in Extracting Heat Anomalies of Geothermal. J. Anhui Agric. Sci. 2015, 43, 358–360. [Google Scholar] [CrossRef]
- Darge, Y.M.; Hailu, B.T.; Muluneh, A.A.; Kidane, T. Detection of geothermal anomalies using Landsat 8 TIRS data in Tulu Moye geothermal prospect, Main Ethiopian Rift. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 16–26. [Google Scholar] [CrossRef]
- Abuzied, S.M.; Kaiser, M.F.; Shendi, E.-A.H.; Abdel-Fattah, M.I. Multi-criteria decision support for geothermal resources exploration based on remote sensing, GIS and geophysical techniques along the Gulf of Suez coastal area, Egypt. Geothermics 2020, 88, 101893. [Google Scholar] [CrossRef]
- Sadeghi, B.; Khalajmasoumi, M. A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renew. Sustain. Energy Rev. 2015, 43, 818–831. [Google Scholar] [CrossRef]
- Ming, H.; Yanyan, G.; Qing, W.; Peng, H.; Hua, Z. Geothermal anomaly detection based on evidence theory integrating multi-view remote sensing information. Earth Sci. 2024, 49, 347–358. [Google Scholar]
- Zhao, F.; Peng, Z.; Qian, J.; Chu, C.; Zhao, Z.; Chao, J.; Xu, S. Detection of geothermal potential based on land surface temperature derived from remotely sensed and in-situ data. Geo-Spat. Inf. Sci. 2023, 26, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y. GIS-supported certainty factor (CF) models for assessment of geothermal potential: A case study of Tengchong County, southwest China. Energy 2017, 140, 552–565. [Google Scholar] [CrossRef]
- Yongzhu, X.; Feng, C.; Shaopeng, H. Application of remote sensing technique to the identification ofgeothermal anomaly in Tengchong area, southwest China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2016, 43, 109–118. [Google Scholar] [CrossRef]
- Domra Kana, J.; Djongyang, N.; Danwe, R.; Njandjock Nouck, P.; Abdouramani, D. A review of geophysical methods for geothermal exploration. Renew. Sustain. Energy Rev. 2015, 44, 87–95. [Google Scholar] [CrossRef]
- Aretouyap, Z.; Nouck, P.N.; Nouayou, R. A discussion of major geophysical methods used for geothermal exploration in Africa. Renew. Sustain. Energy Rev. 2016, 58, 775–781. [Google Scholar] [CrossRef]
- Alqahtani, F.; Ehsan, M.; Abdulfarraj, M.; Aboud, E.; Naseer, Z.; El-Masry, N.N.; Abdelwahed, M.F. Machine Learning Techniques in Predicting Bottom Hole Temperature and Remote Sensing for Assessment of Geothermal Potential in the Kingdom of Saudi Arabia. Sustainability 2023, 15, 12718. [Google Scholar] [CrossRef]
- Ghoneim, E.; Healey, C.; Hemida, M.; Shebl, A.; Fahil, A. Integration of Geophysical and Geospatial Techniques to Evaluate Geothermal Energy at Siwa Oasis, Western Desert, Egypt. Remote Sens. 2023, 15, 5094. [Google Scholar] [CrossRef]
- Tian, B.; Wang, L.; Kashiwaya, K.; Koike, K. Combination of Well-Logging Temperature and Thermal Remote Sensing for Characterization of Geothermal Resources in Hokkaido, Northern Japan. Remote Sens. 2015, 7, 2647–2667. [Google Scholar] [CrossRef]
- Yusuf, A.; San, L.H.; Abir, I.A. A Preliminary Geothermal Prospectivity Mapping Based on Integrated GIS, Remote-Sensing, and Geophysical Techniques around Northeastern Nigeria. Sustainability 2021, 13, 8525. [Google Scholar] [CrossRef]
- Sang, X.; Xue, L.; Liu, J.; Zhan, L. A Novel Workflow for Geothermal Prospectively Mapping Weights-of-Evidence in Liaoning Province, Northeast China. Energies 2017, 10, 1069. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yu, H.; Li, J.; Xie, Y.; Lei, Z. Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models. Renew. Energy 2020, 153, 564–579. [Google Scholar] [CrossRef]
- Abdel Zaher, M.; Elbarbary, S.; Sultan, S.A.; El-Qady, G.; Ismail, A.; Takla, E.M. Crustal thermal structure of the Farafra oasis, Egypt, based on airborne potential field data. Geothermics 2018, 75, 220–234. [Google Scholar] [CrossRef]
- Shang, J.; Liu, M.; Cao, Y.; Shi, H.; Wei, X. Trace element geochemistry of high-temperature geothermal waters in the Yunnan-Tibet geothermal province, Southwest China. Appl. Geochem. 2024, 162, 105910. [Google Scholar] [CrossRef]
- Iqbal, M.; Kusumasari, B.A. Deciphering the Way Ratai geothermal system, Lampung, Indonesia: A comprehensive geochemical and isotopic analysis. Geothermics 2024, 119, 102985. [Google Scholar] [CrossRef]
- Mwangi, S.M. Application of Geochemical Methods in Geothermal Exploration in Kenya. Procedia Earth Planet. Sci. 2013, 7, 602–606. [Google Scholar] [CrossRef]
- Ahmmed, B.; Vesselinov, V.V. Machine learning and shallow groundwater chemistry to identify geothermal prospects in the Great Basin, USA. Renew. Energy 2022, 197, 1034–1048. [Google Scholar] [CrossRef]
- Tian, J.; Stefánsson, A.; Li, Y.; Li, L.; Xing, L.; Li, Z.; Li, Y.; Zhou, X. Geochemistry of thermal fluids and the genesis of granite-hosted Huangshadong geothermal system, Southeast China. Geothermics 2023, 109, 102647. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Chen, Z.; Zhang, Z.; Zhang, F.; Zhang, S. Geochemical characterization and implications of soil gas and geothermal fluids in the fault zone of Xiongan new area. Appl. Geochem. 2024, 161, 105886. [Google Scholar] [CrossRef]
- Donato, A.; Tassi, F.; Pecoraino, G.; Manzella, A.; Vaselli, O.; Gagliano Candela, E.; Santilano, A.; La Pica, L.; Scaletta, C.; Capecchiacci, F. Geochemical investigations of the geothermal systems from the Island of Sicily (southern Italy). Geothermics 2021, 95, 102120. [Google Scholar] [CrossRef]
- Wenhui, Z.; Zhao, J.; Xi, C.; Ziliang, Z.; Manli, W.; Yichao, D. Application of Remote Sensing and Hydrochemical Method in Comprehensive Prediction of Geothermal Target Area: A Case Study in Xianning Area. Resour. Environ. Eng. 2022, 36, 232–238. [Google Scholar] [CrossRef]
- Ulusoy, İ.; Diker, C.; Şen, E.; Çubukçu, H.E.; Gümüş, E. Multisource and temporal thermal infrared remote sensing of Hasandağ Stratovolcano (Central Anatolia, Turkey). J. Volcanol. Geotherm. Res. 2022, 428, 107579. [Google Scholar] [CrossRef]
- Gemitzi, A.; Dalampakis, P.; Falalakis, G. Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102283. [Google Scholar] [CrossRef]
- Taoyong, Z.; Zhenghai, W.; Haoyang, Q.; Yaqi, Z. Remote sensing extraction of geothermal anomaly based on terrain effect correction. Natl. Remote Sens. Bull. 2020, 24, 265–276. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, C.; Kereszturi, G.; Jeyakumar, P.; Pullanagari, R.; Reeves, R.; Rae, A.; Procter, J.N. Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing. Geothermics 2023, 111, 102716. [Google Scholar] [CrossRef]
- Elbarbary, S.; Abdel Zaher, M.; Saibi, H.; Fowler, A.-R.; Saibi, K. Geothermal renewable energy prospects of the African continent using GIS. Geotherm. Energy 2022, 10, 8. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Chen, W.; Li, Y.; Han, J.; Wang, X.; Bai, X.; Yin, Z.; Li, X.; Hou, P.; et al. GIS model for geothermal advantageous target selection. Sci. Rep. 2023, 13, 6024. [Google Scholar] [CrossRef] [PubMed]
- Tende, A.W.; Aminu, M.D.; Gajere, J.N. A spatial analysis for geothermal energy exploration using bivariate predictive modelling. Sci. Rep. 2021, 11, 19755. [Google Scholar] [CrossRef] [PubMed]
- Kiavarz, M.; Jelokhani-Niaraki, M. Geothermal prospectivity mapping using GIS-based Ordered Weighted Averaging approach: A case study in Japan’s Akita and Iwate provinces. Geothermics 2017, 70, 295–304. [Google Scholar] [CrossRef]
- Xu, L.; Wu, W.; Qian, J.; Huang, S.; Xie, B.; Hu, T.; Lang, X.; He, B.; Hu, C. Analysis of geothermal potential in Hangjiahu area based on remote sensing and geographic information system. Front. Earth Sci. 2023, 10, 1031665. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Li, Y.; Huang, Y.; Zhao, J.; Yi, Y.; Li, J.; Zhang, J.; Zhang, D. Geothermal Spatial Potential and Distribution Assessment Using a Hierarchical Structure Model Combining GIS, Remote Sensing, and Geophysical Techniques—A Case Study of Dali’s Eryuan Area. Energies 2023, 16, 6530. [Google Scholar] [CrossRef]
Infrared Remote Sensing | Band Range | The Sensor Receives Information from the Source |
---|---|---|
Near infrared/Short-wave infrared | 0.76~2.5 μm | It is mainly the reflected energy of the surface to the solar radiation, and the contribution of the Earth’s own radiation is very small |
Middle infrared | 2.5~6.0 μm | It contains both the target’s own thermal radiation and the target’s reflected radiation to the sun’s mid-infrared radiation, both of which are of the same order of magnitude |
Thermal infrared | 6.0~15.0 μm | The thermal radiation of the ground object is the main part, and the reflected solar radiation can be ignored |
Ultra-far infrared | 15.0~1000 μm | This band is rarely used in Earth remote sensing observation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, W.; Guo, T. Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection. Remote Sens. 2024, 16, 1690. https://doi.org/10.3390/rs16101690
Wang S, Xu W, Guo T. Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection. Remote Sensing. 2024; 16(10):1690. https://doi.org/10.3390/rs16101690
Chicago/Turabian StyleWang, Sen, Wei Xu, and Tianqi Guo. 2024. "Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection" Remote Sensing 16, no. 10: 1690. https://doi.org/10.3390/rs16101690
APA StyleWang, S., Xu, W., & Guo, T. (2024). Advances in Thermal Infrared Remote Sensing Technology for Geothermal Resource Detection. Remote Sensing, 16(10), 1690. https://doi.org/10.3390/rs16101690