Using Downwelling Far- and Thermal-Infrared Hyperspectral Radiance for Cloud Phase Classification in the Antarctic
Abstract
:1. Introduction
2. Instruments and Data
3. Method
3.1. The Features Selection
3.2. The Classification Method
4. Results and Discussion
4.1. Results
4.2. Case Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
1 | BT at 900 cm−1 | 18 | BTR of 935.8 to 988.4 cm−1 | 35 | BTD of 420 to 550 cm−1 |
2 | BTR of 496 to 513 cm−1 | 19 | BTR of 420 to 512 cm−1 | 36 | BTD of 420 to 589 cm−1 |
3 | BTR of 496 to 532 cm−1 | 20 | BTR of 420 to 550 cm−1 | 37 | BTD of 420 to 726 cm−1 |
4 | BTR of 558 to 482 cm−1 | 21 | BTR of 420 to 589 cm−1 | 38 | BTD of 420 to 778 cm−1 |
5 | Ratio of the BT sum of 532, 553, 573.5 cm−1 to the BT sum of 596, 608.5 cm−1 | 22 | BTRR of 420 to 726 cm−1 | 39 | BTD of 512 to 550 cm−1 |
6 | Slope of the fitted function of BT in the 800–900 cm−1 interval | 23 | BTR of 420 to 778 cm−1 | 40 | BTD of 512 to 589 cm−1 |
7 | Slope of the fitted function of BT in the 900–1000 cm−1 interval | 24 | BTR of 512 to 550 cm−1 | 41 | BTD of 512 to 726 cm−1 |
8 | BTR of 558 to 495 cm−1 | 25 | BTR of 512 to 589 cm−1 | 42 | BTD of 512 to 778 cm−1 |
9 | BTR of 532 to 553 cm−1 | 26 | BTR of 512 to 726 cm−1 | 43 | BTD of 550 to 589 cm−1 |
10 | Ratio of the BT sum of 532, 553, 573.5 cm−1 to the BT sum of 428, 496.5 cm−1 | 27 | BTR of 512 to 778 cm−1 | 44 | BTD of 550 to 726 cm−1 |
11 | Ratio of the BT sum of 428, 496.5 cm−1 to the BT sum of 596, 608.5 cm−1 | 28 | BTR of 550 to 589 cm−1 | 45 | BTD of 550 to 778 cm−1 |
12 | Ratio of the BT sum of 428, 496.5, 532, 553, 573.5 cm−1 to the BT sum of 596, 608.5 cm−1 | 29 | BTR of 550 to 726 cm−1 | 46 | BTD of 589 to 726 cm−1 |
13 | Ratio of the BT sum of 478, 489 cm−1 to the BT sum of 774, 778 cm−1 | 30 | BTR of 550 to 778 cm−1 | 47 | BTD of 589 to 778 cm−1 |
14 | Ratio of the BT product of 478, 489 cm−1 to the BT product of 774, 778 cm−1 | 31 | BTR of 589 to 726 cm−1 | 48 | BTD of 726 to 778 cm−1 |
15 | Ratio of the BT sum of 400, 460.5 cm−1 to the BT sum of 874, 940 cm−1 | 32 | BTR of 589 to 778 cm−1 | 49 | STD of BT in the 528–552 cm−1 interval |
16 | Ratio of the BT product of 400, 460.5 cm−1 to the BT product of 874, 940 cm−1 | 33 | BTR of 726 to 778 cm−1 | 50 | STD of BT in the 500–550 cm−1 interval |
17 | BTR of 862.5 to 935.8 cm−1 | 34 | BTD of 420 to 512 cm−1 |
References
- Peterson, C.A.; Huang, X.; Chen, X.; Yang, P. Synergistic Use of Far- and Mid-Infrared Spectral Radiances for Satellite-Based Detection of Polar Ice Clouds Over Ocean. J. Geophys. Res. Atmos. 2021, 127, 1–20. [Google Scholar] [CrossRef]
- Martinazzo, M.; Magurno, D.; Cossich, W.; Serio, C.; Masiello, G.; Maestri, T. Assessment of the accuracy of scaling methods for radiance simulations at far and mid infrared wavelengths. J. Quant. Spectrosc. Radiat. Transf. 2021, 271, 107739. [Google Scholar] [CrossRef]
- Lachlan-Cope, T. Antarctic clouds. Polar Res. 2010, 29, 150–158. [Google Scholar] [CrossRef]
- Matus, A.V.; L’Ecuyer, T.S. The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [Google Scholar] [CrossRef]
- Key, J.R.; Intrieri, J.M. Cloud particle phase determination with the AVHRR. J. Appl. Meteorol. 2000, 39, 1797–1804. [Google Scholar] [CrossRef]
- Di Natale, G.; Turner, D.D.; Bianchini, G.; Del Guasta, M.; Palchetti, L.; Bracci, A.; Baldini, L.; Maestri, T.; Cossich, W.; Martinazzo, M.; et al. Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome-C (Antarctica). Atmos. Meas. Tech. 2022, 15, 7235–7258. [Google Scholar] [CrossRef]
- Silber, I.; Verlinde, J.; Eloranta, E.W.; Cadeddu, M. Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology. J. Geophys. Res. Atmos. 2018, 123, 6099–6121. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Hines, K.M.; Kay, J.E.; Key, E.L.; Lazzara, M.A.; Lubin, D.; McFarquhar, G.M.; Gorodetskaya, I.V.; Grosvenor, D.P.; et al. Tropospheric clouds in Antarctica. Rev. Geophys. 2012, 50, RG1004. [Google Scholar] [CrossRef]
- Lawson, R.P.; Gettelman, A. Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA 2014, 111, 18156–18161. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, G.; Bianchini, G.; Del Guasta, M.; Ridolfi, M.; Maestri, T.; Cossich, W.; Magurno, D.; Palchetti, L. Characterization of the Far Infrared Properties and Radiative Forcing of Antarctic Ice and Water Clouds Exploiting the Spectrometer-LiDAR Synergy. Remote Sens. 2020, 12, 3574. [Google Scholar] [CrossRef]
- Roscow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2288. [Google Scholar] [CrossRef]
- Sassen, K. The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment. Bull. Am. Meteorol. Soc. 1991, 72, 1848–1866. [Google Scholar] [CrossRef]
- Hu, Y.-X.; Winker, D.; Yang, P.; Baum, B.; Poole, L.; Vann, L. Identification of cloud phase from PICASSO-CENA lidar depolarization: A multiple scattering sensitivity study. J. Quant. Spectrosc. Radiat. Transf. 2001, 70, 569–579. [Google Scholar] [CrossRef]
- Shupe, M.D. A ground-based multisensor cloud phase classifier. Geophys. Res. Lett. 2007, 34, L22809. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Smith, W.L.; Spinhirne, J.D.; Revercomb, H.E. The 27–28 October 1986 FIRE IFO cirrus case study:Spectral properties of cirrus clouds in the 8-12 μm window. Mon. Weather Rev. 1990, 118, 2377–2388. [Google Scholar] [CrossRef]
- Strabala, K.I.; Ackerman, S.A. Cloud Properties inferred from 8-12 µm Data. J. Appl. Meteorol. 1994, 33, 212–229. [Google Scholar] [CrossRef]
- Lubin, D. Thermodynamic phase of maritime Antarctic clouds from FTIR and supplementary radiometric data. J. Geophys. Res. Atmos. 2004, 109, D04204. [Google Scholar] [CrossRef]
- Garrett, T.J.; Zhao, C. Ground-based remote sensing of thin clouds in the Arctic. Atmos. Meas. Tech. 2013, 6, 1227–1243. [Google Scholar] [CrossRef]
- Magurno, D.; Cossich, W.; Maestri, T.; Bantges, R.; Brindley, H.; Fox, S.; Harlow, C.; Murray, J.; Pickering, J.; Warwick, L.; et al. Cirrus Cloud Identification from Airborne Far-Infrared and Mid-Infrared Spectra. Remote Sens. 2020, 12, 2097. [Google Scholar] [CrossRef]
- Harries, J.; Carli, B.; Rizzi, R.; Serio, C.; Mlynczak, M.; Palchetti, L.; Maestri, T.; Brindley, H.; Masiello, G. The Far-infrared Earth. Rev. Geophys. 2008, 46, RG4004. [Google Scholar] [CrossRef]
- Di Natale, G.; Palchetti, L. Sensitivity studies toward the retrieval of ice crystal habit distributions inside cirrus clouds from upwelling far infrared spectral radiance observations. J. Quant. Spectrosc. Radiat. Transf. 2022, 282, 108120. [Google Scholar] [CrossRef]
- Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D. Analysis of cirrus cloud spectral signatures in the far infrared. J. Quant. Spectrosc. Radiat. Transf. 2014, 141, 49–64. [Google Scholar] [CrossRef]
- Maestri, T.; Arosio, C.; Rizzi, R.; Palchetti, L.; Bianchini, G.; Guasta, M.D. Antarctic Ice Cloud Identification and Properties Using Downwelling Spectral Radiance From 100 to 1400cm−1. J. Geophys. Res. Atmos. 2018, 124, 4761–4781. [Google Scholar] [CrossRef]
- Maestri, T.; Cossich, W.; Sbrolli, I. Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared. Atmos. Meas. Tech. 2019, 12, 3521–3540. [Google Scholar] [CrossRef]
- Turner, D.D. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from Ground-Based Aeri Observations. Ph.D. Thesis, University of Wisconsin Madison, Madison, WI, USA, 2003. [Google Scholar]
- Natale, G.D.; Palchetti, L.; Bianchini, G. Remote sensing of polar ice and mixed phase clouds properties by means of far infrared spectral measurements over the Antarctic Plateau. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Turner, D.D.; Ackerman, S.A.; Baum, B.A.; Revercomb, H.E.; Yang, P. Cloud Phase Determination Using Ground-Based AERI Observations at SHEBA. J. Appl. Meteorol. 2003, 42, 701–715. [Google Scholar] [CrossRef]
- Lubin, D.; Bromwich, D.; Vogelmann, A.; Verlinde, J.; Russell, L. ARM West Antarctic Radiation Experiment(AWARE) Field Campaign Report; United States Department of Energy: Washington, DC, USA, 2017.
- Lubin, D.; Zhang, D.; Silber, I.; Scott, R.C.; Kalogeras, P.; Battaglia, A.; Bromwich, D.H.; Cadeddu, M.; Eloranta, E. AWARE: The Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment. Bull. Am. Meteorol. Soc. 2020, 101, E1069–E1091. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Revercomb, H.E.; Best, F.A.; Ciganovich, N.C.; Dedecker, R.G.; Dirkx, T.P.; Ellington, S.C.; Feltz, W.F.; Garcia, R.K.; Howell, H.B.; et al. Atmospheric Emitted Radiance Interferometer. Part I: Instrument Design. J. Atmos. Ocean. Technol. 2004, 21, 1763–1776. [Google Scholar] [CrossRef]
- Knuteson, R.O.; Revercomb, H.E.; Best, F.A.; Ciganovich, N.C.; Dedecker, R.G.; Dirkx, T.P.; Ellington, S.C.; Feltz, W.F.; Garcia, R.K.; Howell, H.B. Atmospheric Emitted Radiance Interferometer. Part II: Instrument Performance. J. Atmos. Ocean. Technol. 2004, 21, 1777–1789. [Google Scholar] [CrossRef]
- Demirgian, J.; Dedecker, R. Atmospheric Emitted Radiance Interferometer (AERI) Handbook; United States Department of Energy: Washington, DC, USA, 2005.
- Ye, J.; Liu, L.; Yang, W.; Ren, H. Using Artificial Neural Networks to Estimate Cloud-Base Height From AERI Measurement Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1. [Google Scholar] [CrossRef]
- Liu, D.; Yang, Y.; Zhou, Y.; Huang, H.; Cheng, Z.; Luo, J.; Zhang, Y.; Duan, L.; Shen, Y.; Bai, J.; et al. High spectral resolution lidar for atmosphere remote sensing: A review. Infrared Laser Eng. 2015, 44, P2535–P2546. [Google Scholar]
- Eloranta, E. High Spectral Resolution lidar measurements of atmospheric extinction: Progress and challenges. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014. [Google Scholar]
- Turner, D.D.; Eloranta, E.W. Validating Mixed-Phase Cloud Optical Depth Retrieved From Infrared Observations With High Spectral Resolution Lidar. IEEE Geosci. Remote Sens. Lett. 2008, 5, 285–288. [Google Scholar] [CrossRef]
- Goldsmith, J. High Spectral Resolution Lidar Instrument Handbook; United States Department of Energy: Washington, DC, USA, 2016.
- Widener, K.; Bharadwaj, N.; Johnson, K. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook; United States Department of Energy: Washington, DC, USA, 2012.
- Holdridge, D. Balloon-Borne Sounding System (SONDE) Instrument Handbook; United States Department of Energy: Washington, DC, USA, 2020.
- Fairless, T.; Jensen, M.; Zhou, A.; Giangrande, S.E. Interpolated Sonde and Gridded Sonde Value-Added Products; United States Department of Energy: Washington, DC, USA, 2021.
- Zhang, D.; Comstock, J.; Morris, V. Comparison of planetary boundary layer height from ceilometer with ARM radiosonde data. Atmos. Meas. Tech. 2022, 15, 4735–4749. [Google Scholar] [CrossRef]
- Turner, D.D. Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA. J. Appl. Meteorol. 2005, 44, 427–444. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Qin, J.; He, Z.-S. A SVM face recognition method based on Gabor-Featured Key Points. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005. [Google Scholar]
- Liu, L.; Sun, X.; Gao, T. Research on Cloud Phase Detemination Using Infrared Emissivity Spectrum Data. Spectrosc. Spectr. Anal. 2016, 36, 3885–3894. [Google Scholar]
Number of Ice Cloud Samples | Number of Mixed Cloud Samples | Number of Liquid Water Cloud Samples | Number of Other Samples | |
---|---|---|---|---|
Shupe’s method | 5518 | 3491 | 1897 | 0 |
Turner’s method | 4029 | 4493 | 55 | 2329 |
Proposed method | 7134 | 3405 | 367 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Liu, L.; Ye, J.; Xie, H. Using Downwelling Far- and Thermal-Infrared Hyperspectral Radiance for Cloud Phase Classification in the Antarctic. Remote Sens. 2024, 16, 71. https://doi.org/10.3390/rs16010071
Ren H, Liu L, Ye J, Xie H. Using Downwelling Far- and Thermal-Infrared Hyperspectral Radiance for Cloud Phase Classification in the Antarctic. Remote Sensing. 2024; 16(1):71. https://doi.org/10.3390/rs16010071
Chicago/Turabian StyleRen, Hong, Lei Liu, Jin Ye, and Hailing Xie. 2024. "Using Downwelling Far- and Thermal-Infrared Hyperspectral Radiance for Cloud Phase Classification in the Antarctic" Remote Sensing 16, no. 1: 71. https://doi.org/10.3390/rs16010071
APA StyleRen, H., Liu, L., Ye, J., & Xie, H. (2024). Using Downwelling Far- and Thermal-Infrared Hyperspectral Radiance for Cloud Phase Classification in the Antarctic. Remote Sensing, 16(1), 71. https://doi.org/10.3390/rs16010071