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Abstract: The cloud phase is one of the most important parameters of clouds. In this paper, we
propose a method for cloud phase classification that synergistically utilizes the far- and thermal-
infrared bands based on the Atmospheric Emitted Radiance Interferometer (AERI) at the Atmospheric
Radiation Measurement West Antarctic Radiation Experiment (AWARE) observatory in 2016. The
possible features in the far- and thermal-infrared bands are analyzed based on the differences in the
simulated cloud brightness temperature (BT) spectra with different cloud phases. Using the support
vector machine (SVM) algorithm, four features are determined to identify the cloud phase, which
include the BT at 900 cm−1, the slope of the fitted function of BT in the 900–1000 cm−1 interval, the
BT difference (BTD) between 512 cm−1 and 726 cm−1, and the BTD between 550 cm−1 and 726 cm−1.
Here, the performance of the proposed method is evaluated with Shupe’s and Turner’s method. The
monthly average accuracy of the proposed method, the method without the two far-infrared features,
and Turner’s method are about 76%, 36%, and 49%, respectively, which infer the good performance
of the proposed method and also indicate that the far-infrared band features can effectively enhance
cloud phase classification. It is notable that, compared to Shupe’s method, the accuracy for the
proposed method is only 61% during the Antarctic summer, which results from the definitions of
cloud phase and radiative effect. In addition, the accuracy is only 44% for Turner’s method in seasons
with a low frequency of mixed clouds due to the significant effect of water vapor.

Keywords: Atmospheric Emitted Radiance Interferometer (AERI); far-infrared (FIR); Antarctic;
cloud phase

1. Introduction

Clouds have a significant effect on the Earth’s radiative budget and climate change [1].
The feedback processes associated with clouds and the impact of clouds on heating or
cooling the atmosphere are quite complex [2]. For example, cloud phase, particle size
distribution, and concentration affect the transmission of longwave radiation (i.e., cloud ra-
diation effects), dramatically impacting the Earth’s climate system [3]. Cloud phase, among
them, is a prerequisite for studying cloud microphysical properties and largely determines
a cloud’s radiation effects [4]. The incorrect classification of cloud phases may lead to large
retrieval errors (20–100%) in optical depth and effective particle radius, which convert into
errors of 5–20% in downwelling longwave fluxes [5]. There are still large uncertainties
in assessing the impact of clouds on the Earth’s radiation budget (ERB) [1,6]. There are
observable fast-warming phenomena in the Antarctic troposphere, and clouds play a great
impact on this aspect of climate change [7]. However, little is known about the clouds in the
Antarctic, an isolated and harsh place, due to the challenges in deploying instruments and
the constraints of traditional satellite passive remote sensing techniques [8–10]. Therefore,
accurately identifying cloud phases is significant for understanding cloud radiation effects
and evaluating the ERB in the Antarctic.
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There have been many studies on cloud phase classification. ISCCP [11] used clouds
top pressure and temperature to classify them into ice and liquid water clouds, but, in fact,
cloud phase is not entirely determined by these two parameters. A more widespread cloud
phase classification method mainly uses the depolarization ratio based on active remote
sensing instruments, where the depolarization ratio of liquid water is close to 0, and the de-
polarization ratio of ice is larger [12,13]. However, the empirical threshold based on a single
instrument in this method may cause significant errors. Based on this, Shupe [14] proposed
to combine the ground-based millimeter-wave cloud radar, polarized lidar, microwave
radiometer, and radiosonde to classify polar cloud phases and set thresholds based on
physical principles and observation data to classify atmospheric features into ice clouds,
mixed-phase clouds, liquid water clouds, precipitation, and aerosols, which is a more
accurate classification method not limited by region or time. Nevertheless, this method
relies on multiple ground-based observation instruments, and setting thresholds requires
long-term observation data. In addition, some studies have suggested that cloud phase clas-
sification can be based on passive remote sensing measurement data, for example, by using
the difference in absorption between ice and water in the infrared band: the absorption
coefficients of ice and water are almost equal in the 1000–1250 cm−1 (8–10 µm) range, while
the absorption coefficient of ice is larger than that of water in the 750–1250 cm−1 (10–13 µm)
range. This phenomenon leads to the difference in brightness temperature (BT) of different
cloud phases. According to this physical foundation, Ackerman et al. [15] first proposed
a tri-spectral cloud phase classification method based on 833 cm−1 (12 µm), 910 cm−1

(11 µm), and 1250 cm−1 (8 µm) spectra. On this basis, Strabala et al. [16] further established
an algorithm for cloud phase classification at the 833 cm−1 (12 µm), 910 cm−1 (11 µm),
and 1176 cm−1 (8.5 µm) spectra. Both of them used BT difference (BTD) for the analysis.
Dan Lubin [17] used BT slope (BTS) for cloud phase classification based on 800–1204 cm−1

(8.3–12.5 µm) hyperspectral infrared radiation data, which performed well. However, this
method is sensitive to water vapor absorption, and inaccurate measurement of the humidity
profile can easily cause errors in cloud phase identification. Focusing on a narrow window
with particularly small water vapor absorption, Garrett et al. [18] proposed a cloud phase
retrieval algorithm based on 862.5 cm−1, 935.8 cm−1, and 988.4 cm−1 spectra that classified
clouds into ice, liquid water, and indeterminate cases by exploiting the difference in the
emissivity of ice and water particles within the atmospheric window region. This algorithm
is able to retrieve optically thin non-blackbody clouds, but its performance is affected by
the temperature at cloud base height and stratospheric ozone profile measurement errors.
Methods of classifying cloud phases based on infrared spectra are relatively reliable, but
most of them are limited to the thermal-infrared band of 750–1250 cm−1 (8–13 µm) spectra
and do not fully utilize the far-infrared region.

The far-infrared (FIR) spectral band is essential to the radiation spectrum, ranging from
about 100 to 667 cm−1 (15–100 µm) spectra [19]. The equivalent blackbody temperature of
the Earth is 255 K, whose peak energy occurs at about 500 cm−1 in the FIR [20]. But, until
the end of the last century, due to the limitations of observation technology on various plat-
forms, research on this band was still relatively lacking [21,22]. In recent years, significant
progress has been made in the high-resolution observation of radiation in the FIR, including
multiple platforms such as satellite, airborne, and ground-based [23]. Many studies have
shown that the FIR is highly sensitive to clouds and water vapor [24]. In this band, water
absorption is greater than ice, and the atmosphere is transparent enough to supply the
measurement and retrieval in the thermal-infrared band, thereby improving the accuracy
of cloud detection and water vapor profile retrieval [25,26]. For example, Turner et al. [27]
chose the slope of the emissivity of 800–900 cm−1 (11–12.5 µm) spectra, the ratio of the
average cloud emissivity from 526–588 cm−1 (17–19 µm) to 833–909 cm−1 (11–12 µm)
spectra, and the difference between the average cloud emissivity from 526–588 cm−1 to
833–909 cm−1 spectra to classify cloud phases as ice, mixed, liquid water, and opaque
clouds, but this classification method is not applicable to cases with high water vapor and
large optical depth (above about 5). In addition, some studies determined cloud phases
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based on machine learning algorithms. For example, Maestri et al. [23] used a supervised
features’ selection algorithm to find out the most sensitive BTDs for the determination of
the full spectral band. This approach is simple and efficient, but it relies excessively on
statistical patterns among the data and ignores the physical information of the ice and
liquid water cloud spectra. Thus, this study establishes a cloud phase classification method
based on the ice and liquid water clouds BT spectra with the AERI, utilizing the far-infrared
band to reduce the effect of water vapor.

The organization of this paper is as follows. Section 2 introduces the instruments and
data used in this paper. Section 3 proposes a new method for cloud phase determination.
Section 4 presents the results of the proposed method and analyzes the results by individual
case. Section 5 provides a summary.

2. Instruments and Data

The Atmospheric Radiation Measurement (ARM) conducted a climate-related field
campaign in West Antarctica, the ARM West Antarctic Radiation Experiment (AWARE),
to study the surface energy balance and global climate patterns in the Antarctic [28]. This
study uses observational data from McMurdo Station (77◦51′S, 166◦40′E) in the AWARE
from January to December 2016, including the data obtained with AERI, the High Spectral
Resolution Lidar (HSRL), the Ka-band ARM zenith radar (KAZR), and sounding reanalysis
data [29].

The Atmospheric Emitted Radiance Interferometer (AERI) deployed at McMurdo
Station is a passive, fully automated, ground-based Fourier-Transform Spectrometer (FTS)
developed by the University of Wisconsin Space Science and Engineering Center (UW-
SSEC) for the ARM program, which is used to measure the downwelling radiance of the
sky directly above the instrument [30,31]. The spectrum measurement range of the AERI
is between 400 and 3300 cm−1 (3–25 µm) with a spectral resolution of 0.5 cm−1, and the
field of view of the instrument is 1.3◦. The AERI collects data every 20 s in rapid sampling
mode, providing the vertical profiles of clouds and aerosols’ temperature, humidity, and
infrared spectral properties [32,33].

The High Spectral Resolution Lidar (HSRL) system is designed for long-term unat-
tended operation, controlled remotely, and operation as an Internet-enabled device [34].
With a small field of view and a narrow optical bandwidth, the HSRL uses the spectral
distribution of the laser backscatter signal to distinguish aerosol and molecular signals,
thus improving atmospheric parameters retrieval accuracy [35]. The HSRL deployed
at McMurdo Station has a temporal resolution of 30 s and a vertical resolution of 30 m
and can provide vertical profiles of optical depth, depolarization ratio, and backscatter
coefficient [36,37].

The Ka-band ARM zenith radar (KAZR) deployed at McMurdo Station is a zenith-
pointing Doppler cloud radar operating at approximately 35 GHz. The main purpose of
the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler
moments (reflectivity, radial Doppler velocity, and spectra width) at a range resolution of
approximately 30 m from near-ground to nearly 20 km in altitude [38].

The balloon-borne sounding system (SONDE) includes fixed ground stations and
disposable radiosondes, which provide vertical profiles of temperature, pressure, relative
humidity, wind direction, and wind speed [28,39]. AWARE launches balloons four times a
day. This study uses interpolated sounding data with a time resolution of 1 min and an
altitude range of ground to 25–30 km. The temperature and pressure resolutions are 0.1 K
and 0.1 hPa, respectively [40,41].

3. Method
3.1. The Features Selection

In this study, the line-by-line radiative transfer model (LBLRTM) combined with
discrete ordinate radiative transfer (DISORT) is used to simulate the infrared hyperspectral
radiative properties of clouds [42]. Using the atmospheric profile at 01:48 UTC on the 5
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January 2016, ice and liquid water clouds radiation with different cloud optical depths and
effective particle radius is simulated and converted into BT using the following equation:

TB =
b× υ

log
(

1 + a×υ3

I

) (1)

where I is the radiance in mW/(m2 sr cm−1); ν is the wavenumber; a and b are constants
of 1.191 × 10−5 and 1.439, respectively; and TB is the brightness temperature in K. The
hyperspectral BT data for optical depths of 0.2, 1.0, and 8.0 and three sets of effective
particle radius for liquid water (reff,w) and ice (reff,i) clouds (reff,w = 5 µm and reff,i = 20 µm,
reff,w = 7 µm and reff,i = 30 µm, reff,w = 10 µm and reff,i = 50 µm) are shown in Figure 1.
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Figure 1. Hyperspectral brightness temperature simulations of ice (dashed lines) and liquid water
clouds (solid lines) are calculated for optical depths (τ, shown at the top of the figure) of 0.2 (blue),
1.0 (green), and 8.0 (purple) for each group of particle sizes. The effective radius of liquid water cloud
particles (reff,w) and ice cloud particles (reff,i) are (a) reff,w = 5 µm and reff,i = 20 µm, (b) reff,w = 7 µm
and reff,i = 30 µm, and (c) eff,w = 10 µm and reff,i = 50 µm.

From Figure 1, the BT of ice and liquid water clouds differ significantly at different
intervals. For example, in the region of 400–600 cm−1, the BT of liquid water clouds is
higher than that of ice clouds, and, in the region of 800–1200 cm−1, the BT variation of
liquid water clouds is more moderate than that of ice clouds. By combining this with the
simulated BT data, “features” that are sensitive to cloud phase are selected to distinguish
between ice and liquid water clouds, where “features” refers to the difference, ratio, or
slope of the BT in different narrow spectral regions. Preliminarily, 50 features are selected
empirically according to the simulated BT data and are listed in Appendix A.

To reduce the effect of water vapor, simulated BT data of ice and liquid water clouds
at different specific humidity are considered. Taking the ice phase as an example, Figure 2
shows the simulated ice cloud BT spectra for both high and low specific humidity cases.
Based on this, the features that are highly influenced by water vapor are removed from the
50 possible features selected.
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To further evaluate the ability of the selected feature pairs to determine cloud phases,
the classification accuracy of different numbers of features is studied, where “accuracy”
refers to the comparison between the results of the proposed and Shupe’s methods. The
result shows that the accuracy is low when the number of features is below three (the
monthly average classification accuracy is below 60%, with only 35% in January), and
the cloud phase classification accuracy decreases due to excessive redundancy when the
number of features is above four (the monthly average classification accuracy is below
70%, with only 43% in January). Considering the efficiency and classification accuracy, the
number of feature combinations is four. Finally, features 1, 6, 41, and 44 are determined as
the final features for identifying cloud phases in this study, which are the BT at 900 cm−1,
the slope of the BT fitted function in the 900–1000 cm−1 interval, the BTD between 512 cm−1

and 726 cm−1, and the BTD between 550 cm−1 and 726 cm−1, where features 41 and 44 are
FIR features. Considering that the simulated cloud brightness temperature (CBT) is hardly
below 170 K, clouds with CBT less than 170 K at 900 cm−1 are considered indistinguishable
cases and removed in the measurement data.

3.2. The Classification Method

For the training set, the 270 group samples are built with the optical depth and effective
radius of the different cloud phases. The parameters are set as follows: the optical depths
are 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0, and 8.0; the effective radii of
the ice cloud particles are 10, 20, 30, 50, 70, and 100 µm; the effective radii of the liquid
water cloud particles are 2, 3, 5, 7, 10, and 15 µm; and the effective radii of the mixed
cloud particles are (reff,w = 3 µm, reff,i = 20 µm), (reff,w = 3 µm, reff,i = 30 µm), (reff,w = 5 µm,
reff,i = 30 µm), (reff,w = 7 µm, reff,i = 20 µm), (reff,w = 7 µm, reff,i = 30 µm), and (reff,w = 10 µm,
reff,i = 40 µm). To simulate the observed conditions, the mixed clouds are composed of
different optical depth ratios of ice and water particles (from 1:9 to 9:1), respectively, and
homogeneous mixing. In this article, clouds are classified as mixed clouds when the optical
depth of both ice and water is greater than 10%. If the optical depth of ice (water) is greater
than 10% and that of water (ice) is less than 10%, the cloud is classified as an ice (liquid
water) cloud, which is the same as in Turner’s method [27]. The test set is constructed using
AWARE measurement data in 2016, with the results of Shupe’s method as the true values.

The support vector machines (SVM) have good generalization and high computational
efficiency [43,44]. In this study, the SVM algorithm is used to construct the mapping relation-
ship between BT spectral features and cloud phases in the training and testing processes.
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4. Results and Discussion
4.1. Results

The data with clouds during the AERI observation period are selected based on the
lidar cloud base height, and then the phase classification is evaluated using Shupe’s and
Turner’s methods, respectively. Since Shupe’s method obtains the vertical profile of cloud
phases, it needs to be further processed for evaluation. If there is more than one cloud
phase in the cloud profile and the cloud pixel points of each phase account for more than
30% of the total cloud pixels, it is considered a mixed cloud. In the profiles with the other
cloud phase conditions, it is the cloud phase with the highest proportion. If there is rain,
snow, or drizzle, this profile is judged as precipitation and removed from the evaluation
sample. If there is no cloud or no precipitation, it is a clear sky and can be ignored in the
evaluation [45].

Shupe’s method is a popular cloud phase classification method and can be thought as
the true value for evaluating the proposed method in this study. The occurrence frequencies
of ice, mixed, and liquid water clouds in each month for the three methods as well as the
accuracy of Turner’s and the proposed methods compared with Shupe’s method are shown
in Figure 3. From Figure 3a, the accuracy of Turner’s method is around 50% in each
month. Among them, the accuracy grows to 55% in the Antarctic summer and autumn
(from November to March), which are the months with a higher frequency of mixed cloud
occurrence. Compared with Turner’s method, the proposed method agrees better with
Shupe’s, where the accuracy rate is more than 75%, except for the Antarctic summer (from
December to February), and more than 85% in autumn and winter.
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To further verify the role of the far-infrared band in cloud phase identification, the
accuracy of the method without the two far-infrared features among the four selected
features (only feature 1 and 2) is considered. As shown in Figure 3a, the accuracy of
the proposed method with four features is 77%, which is higher than the accuracy of the
method without the two far-infrared features, i.e., 43%. This infers the good performance of
the proposed method and also indicates that the far-infrared band features can effectively
enhance cloud phase classification. From Figure 3b–d, the McMurdo Station is dominated
by ice clouds, with a proportion of more than 40% and up to 75% in autumn and winter
(from April to September). In contrast, the mixed and liquid water clouds occur more
frequently in spring and summer (from October to March), accounting for about 30% and
15%, respectively, while their percentage decreases significantly in other seasons. The
above results indicate that the ice phase is the main cloud phase in the Antarctic, and the
frequency of different phases of clouds varies greatly with the seasons. It is noticeable that
the average agreement rate is only 63% for the proposed method in the Antarctic summer
(from December to February) and 45% for Turner’s method in seasons with a low frequency
of mixed clouds (autumn and winter, from April to September). In December, Shupe’s
method classified 41% of all cloud profiles as ice clouds, 43% as mixed clouds, and 16% as
liquid water clouds. From Figure 3b–d, the proposed method identifies 53% of the samples
as ice clouds and 42% and 4% as mixed and liquid water clouds, respectively. Meanwhile,
Turner’s method identifies 50% of the cloud profile samples as mixed clouds, similar to
Shupe’s results, but can only identify 31% of ice cloud samples and can hardly detect liquid
water clouds.

To deeply analyze the identification error of Turner’s and the proposed method for the
cloud phases in the Antarctic summer, the data in December are selected for the study. The
total cloud phase samples are 10,906. The detailed results of the classification are shown
in Table 1, where “other samples” represent situations which cannot be recognized. From
Figure 3 and Table 1, it can be concluded that the main reason for the low accuracy of
Turner’s and the proposed method in December is the failure to identify the ice and liquid
water clouds effectively. To investigate the reasons further, the sample data of ice and
liquid water clouds misclassified by the two methods are compared with the classification
thresholds or features, respectively. As in Figure 4, according to Turner’s method, a
sample is considered as the ice (liquid water) cloud if it lies within the ice (liquid water)
cloud feature region and the mixed cloud if it lies between the ice and liquid water cloud
thresholds. Finally, the classification results of the three thresholds are considered together
to determine the sample phase. From Figure 4, it can be found that the misclassification
of the liquid water cloud in Turner’s method is mainly due to the fact that the average
cloud emissivity in the 526–588 cm−1 region is lower than that in the 833–909 cm−1 region,
leading to a misclassified results. The misclassified ice cloud samples are similar, but the
values in the 526–588 cm−1 region are larger than those in the 833–909 cm−1 region. The
proportion of cloud samples correctly classified and misclassified by Turner’s and the
proposed methods within different precipitable water vapor (PWV) intervals are given
in Figure 5, where the blue color indicates the proportion of correctly classified cloud
samples by Turner’s method, and the red indicates the misclassification. It can be seen that,
as PWV increases, the proportion of samples correctly identified by Turner’s method in
each interval decreases, and more samples are misidentified, which indicates that Turner’s
method is highly affected by water vapor. The distribution of the ice and liquid water cloud
data misclassified by the proposed method is shown in Figure 6, and the proportion of
cloud samples in PWV intervals is shown in Figure 5. According to Figure 5, the proportion
correctly identified by the proposed method fluctuates with the increase in PWV, but the
overall change is smoother than that obtained with Turner’s method. Therefore, it can be
assumed that the proposed method is not significantly affected by water vapor.
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Table 1. Comparison of the classification results of the three methods in December 2016.

Number of Ice Cloud
Samples

Number of Mixed
Cloud Samples

Number of Liquid
Water Cloud Samples

Number of Other
Samples

Shupe’s method 5518 3491 1897 0
Turner’s method 4029 4493 55 2329
Proposed method 7134 3405 367 0
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Figure 4. Distribution of Turner’s misclassified ice (blue dots) and liquid water (red dots) cloud
samples data in December 2016. (a) is the slope of cloud emissivity in the 800–900 cm−1 region, (b) is
the ratio of cloud emissivity in the 526–588 cm−1 to 833–909 cm−1 region, and (c) is the difference
between cloud emissivity in the 526–588 cm−1 and in the 833–909 cm−1 regions. The solid lines
indicate liquid water clouds with effective particle radii of 5, 7, and 10 µm, and the dashed lines
indicate ice clouds with effective particle radii of 18, 21, and 26 µm.
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(a) Turner’s and the (b) proposed methods within different PWV intervals in December 2016, where
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the cloud sample is greater than or equal to 0 mm and less than 5 mm. “>60” suggests that the PWV
of the cloud sample is greater than or equal to 60 mm.
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Based on this, the following studies are carried out in order to investigate the impact
of water vapor on Turner’s and the proposed methods. The PWV of the measured data
is divided into seven intervals, ranging from small to large, and the accuracy of Turner’s
and the proposed methods in identifying cloud phases in different intervals is studied.
According to the measured data of AWARE, PWV is divided into seven intervals, i.e., 0–10,
10–15, 15–20, 20–25, 25–30, 30–35, and above 35 mm. As shown in Figure 7, the accuracy of
Turner’s method is about 80% when the PWV is under 10 mm and decreases to 45% as the
PWV increases to 15 mm. When PWV continued to increase, there is a small increase in
accuracy, up to about 60%, and then it rapidly decreases to around 40%. For the proposed
method, the accuracy is almost maintained at about 75%, with small fluctuations. The
above results indicate that Turner’s method is sensitive to water vapor, while the proposed
method is not significantly affected by water vapor. A more detailed analysis will be
discussed in Section 4.2.
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4.2. Case Analysis

To further analyze the results of the proposed methods in Section 4.1, the case at
McMurdo Station on December 25th is selected to compare and analyze the cloud phase
results identified by the three methods.

The HSRL, KAZR, and the radiosonde measurements from 08:00 to 24:00 UTC on
December 25th are given in Figure 8, with the classification results obtained by Shupe’s,
Turner’s, and the proposed methods. It can be seen that, at 08:00–14:00 UTC, there is
a layer of ice cloud with a low backscatter coefficient and a high depolarization ratio
at an altitude of about 1–3 km, with a reflectivity of −12 dBZ. At the same time, there
are discontinuous clouds with a thickness of about 0.1 km above it, with a reflectivity of
about −20 dBZ. Based on the HSRL measurement, they can be determined as ice clouds.
During this period, the cloud phase classification results of Shupe’s method are mainly
ice clouds, with a small number of mixed clouds. The results of Turner’s method are
basically consistent with Shupe’s, except for some unrecognized samples. In contrast, the
proposed method classifies all the clouds as mixed clouds, accompanied by a few ice clouds.
At 17:00–18:00 UTC, a layer of liquid water clouds appears at about 3 km and gradually
dissipates. There are discontinuous multi-layer clouds at 2–3 km, with low backscatter
coefficient and depolarization ratio and a reflectivity of about −30 dBZ. During this time
frame, Shupe’s method identifies all the clouds as liquid water clouds, which is inconsistent
with the detection results of the HSRL and KAZR systems. Turner’s method identifies
the clouds as ice clouds, and the results of the proposed method are mixed clouds. At
18:00–21:00 UTC, the HSRL and KAZR measurements show mixed clouds with a thin liquid
water cloud in the upper layer and a thick ice cloud in the lower layer. At 22:00–24:00 UTC,
the clouds are similar to those at 18:00–21:00 UTC, with a lower ice cloud base height of
1 km and a thickness of 1 km. The height of the upper water cloud gradually extends to
3 km, and the cloud layer is discontinuous. During this time, Shupe’s method identifies the
results mainly as liquid water clouds, Turner’s method as ice and mixed clouds, and the
proposed method mostly as mixed clouds.

Comparing Figure 8e–g, the results of the three methods are not completely consistent.
Although the results of Shupe’s method are taken as the true values in this paper, the
combination of the HSRL and KAZR detection results reveals that this method can also lead
to misclassification (e.g., 17:00–18:00, 23:00–24:00 UTC in Figure 8. The presence of both
ice and liquid water in the clouds during this time period should be classified as mixed
clouds; however, the results of Shupe’s method are water clouds). In addition, Turner’s
and the proposed methods classify cloud phases based on the ratio of the optical depths of
ice and water. A cloud will be classified as a mixed cloud when the optical depths of ice
and water are greater than 10%, which is different from the definition of cloud phases in
Shupe’s method. The different definitions of cloud phases by the three methods also lead
to variations in the classification results (e.g., 08:00–12:00 UTC). For Turner’s method, the
specific humidity is high during the Antarctic summer (about 1.2 g/kg at cloud height, as
shown in Figure 8h), and the accuracy of this method is significantly decreased, owing to
the influence of water vapor, resulting in a poor performance. The proposed method, on the
other hand, performs well as PWV increases and, therefore, is more consistent with Shupe’s
method, with better results. Moreover, since the proposed method uses BT to identify
cloud phases, the cloud phase classification results are radiometric, not physical [18]. The
above-mentioned analysis results of the case are also consistent with Section 4.1.
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Figure 8. The (a) backscatter coefficient and (b) depolarization ratio from HSRL, the (c) reflectivity
from KAZR, the (d) cloud phase profile using Shupe’s method, the cloud phase classification results
of (e) Shupe’s, (f) Turner’s, and (g) the proposed methods, and the (h) average specific humidity and
(i) temperature from 08:00 to 24:00 UTC on the 25 December 2016, in the AWARE. The results of the
three methods are plotted at the clouds’ base heights using HSRL.

5. Conclusions

In this study, we establish a cloud phase classification method synergistically using
the far- and thermal-infrared bands based on AERI, with four cloud brightness temperature
spectral features according to the sensitivity of the far- and thermal -infrared regions to
cloud phases, and compare the results with Shupe’s and Turner’s methods to evaluate the
reliability of the proposed method in this study.
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In this paper, the brightness temperature at 900 cm−1, the slope of the fitted function of
brightness temperature in the 900–1000 cm−1 interval, the brightness temperature difference
between 512 cm−1 and 726 cm−1, and the brightness temperature difference between
550 cm−1 and 726 cm−1 are selected as the features that can identify cloud phases more
accurately with the far-infrared band features. The accuracy of the proposed method with
four features is 77%, which is higher than the accuracy of the method without the two
far-infrared features, i.e., 43%, and that of Turner’s method, i.e., 53%. This infers the good
performance of the proposed method and the ability of the far-infrared band to detect
cloud phases. The results indicate that the cloud phase is mainly composed of ice and that
the frequency of different cloud phases varies significantly with seasons in the Antarctic.
During the observation period, the proposed method agrees with the Shupe’s method by
more than 75%, which is higher than Turner’s method. In addition, Turner’s method is
sensitive to water vapor, and the proposed method is not significantly affected by water
vapor. The accuracy of Turner’s method is about 80% when the PWV is under 10 mm
and decreases rapidly to 40% as the PWV increases. In comparison, the proposed method
consistently performs well, with an accuracy of about 75%. The data on misclassifications
by both methods are further analyzed: the misclassification of Turner’s method is caused
by the influence of water vapor and cloud phase definitions, while the proposed method
misclassified data not only due to the influence of definitions, but also because its results
are in the meaning of “radiation”.

The work in this study is carried out based on Antarctic data, which have some
regional limitations. Future studies can be conducted in the Arctic and mid-latitudes
to validate and extend the cloud phase classification method proposed in this paper. In
addition, the impact of factors such as aerosols on the proposed method will be further
investigated in future works.
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Appendix A

Table A1. The 50 features selected in this article are as follows, where BTR indicates the brightness–
temperature ratio, BTD the difference, and STD the standard deviation.

1 BT at 900 cm−1 18 BTR of 935.8 to 988.4 cm−1 35 BTD of 420 to 550 cm−1

2 BTR of 496 to 513 cm−1 19 BTR of 420 to 512 cm−1 36 BTD of 420 to 589 cm−1

3 BTR of 496 to 532 cm−1 20 BTR of 420 to 550 cm−1 37 BTD of 420 to 726 cm−1

4 BTR of 558 to 482 cm−1 21 BTR of 420 to 589 cm−1 38 BTD of 420 to 778 cm−1

5
Ratio of the BT sum of 532,

553, 573.5 cm−1 to the BT sum
of 596, 608.5 cm−1

22 BTRR of 420 to 726 cm−1 39 BTD of 512 to 550 cm−1

https://adc.arm.gov/discovery/#/
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Table A1. Cont.

6
Slope of the fitted function of

BT in the
800–900 cm−1 interval

23 BTR of 420 to 778 cm−1 40 BTD of 512 to 589 cm−1

7
Slope of the fitted function of

BT in the
900–1000 cm−1 interval

24 BTR of 512 to 550 cm−1 41 BTD of 512 to 726 cm−1

8 BTR of 558 to 495 cm−1 25 BTR of 512 to 589 cm−1 42 BTD of 512 to 778 cm−1

9 BTR of 532 to 553 cm−1 26 BTR of 512 to 726 cm−1 43 BTD of 550 to 589 cm−1

10
Ratio of the BT sum of 532,

553, 573.5 cm−1 to the BT sum
of 428, 496.5 cm−1

27 BTR of 512 to 778 cm−1 44 BTD of 550 to 726 cm−1

11
Ratio of the BT sum of 428,

496.5 cm−1 to the BT sum of
596, 608.5 cm−1

28 BTR of 550 to 589 cm−1 45 BTD of 550 to 778 cm−1

12
Ratio of the BT sum of 428,

496.5, 532, 553, 573.5 cm−1 to
the BT sum of 596, 608.5 cm−1

29 BTR of 550 to 726 cm−1 46 BTD of 589 to 726 cm−1

13
Ratio of the BT sum of 478,
489 cm−1 to the BT sum of

774, 778 cm−1
30 BTR of 550 to 778 cm−1 47 BTD of 589 to 778 cm−1

14
Ratio of the BT product of 478,
489 cm−1 to the BT product of

774, 778 cm−1
31 BTR of 589 to 726 cm−1 48 BTD of 726 to 778 cm−1

15
Ratio of the BT sum of 400,

460.5 cm−1 to the BT sum of
874, 940 cm−1

32 BTR of 589 to 778 cm−1 49 STD of BT in the
528–552 cm−1 interval

16
Ratio of the BT product of 400,
460.5 cm−1 to the BT product

of 874, 940 cm−1
33 BTR of 726 to 778 cm−1 50 STD of BT in the

500–550 cm−1 interval

17 BTR of 862.5 to 935.8 cm−1 34 BTD of 420 to 512 cm−1
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