A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation
Abstract
:1. Introduction
1.1. The Cave of Altamira Geographic Setting
1.1.1. Climatic Context
1.1.2. Geology of the Cave
1.1.3. Previous Microclimatic Monitoring Investigations Conducted in the Cave
1.1.4. History of Previous Interventions
1.2. Previous Studies
- Surface Model: obtained by drone photogrammetry to generate a 2 cm ground sample distance (GSD) model of ground elevation. This model is analyzed to obtain the sinks. A sinkhole in hydrology refers to a geologic or structural feature that acts as a drainage point for water flow in a hydrologic system. Sinks play an essential role in the water cycle by letting surface water flow into the subsurface.
- Overlying thickness model: The digital processing of GPR data is generally based on the amplitude values of the signal for interpretation. Time domain radar data thus consist of back-scattered signals from the subsurface and the signals can be defined as plots of time versus amplitude of the reflected electromagnetic pulses. In addition, the transformation of GPR data into its instantaneous magnitude, phase, and frequency information is an alternative way of processing GPR data. The Hilbert transform is used to express the relationship between the magnitude and phase of a signal or between its real and imaginary parts. This transform reconstructs the phase of a signal from its amplitude. A comprehensive mathematical description of the attributes of GPR data can be found in [43,44,45,46,47]. The Hilbert transform can be successfully applied to complex subsurface rock structures to enhance the reflection and absorption contrast of the electromagnetic wave in a geological medium. As a result, GPR attributes can often uncover or highlight features or patterns that are not evident in standard amplitude data [48,49,50,51].
- Polychrome ceiling model: In 2014, a photogrammetric campaign was conducted to document the ceiling of the Polychrome Hall. This effort aimed to achieve a sub-millimeter resolution level, distinct from the laser scanning process [52]. High-resolution digital elevation models (DEMs) with 200 microns GSD were generated for the cave’s ceiling. By integrating hydrological data, this approach allowed us to simulate capillary pathways and identify critical mass points where water eventually drips to the cave floor. Moreover, the modeling process could consider various factors, such as the geological properties of the ceiling material and its permeability.
2. Materials and Methods
2.1. General Workflow Diagram
2.2. Hydrology of the Polychrome Overlying Layer
2.3. GPR of the Overlying Layer
2.4. Polychrome Ceiling Hydrology
3. Results
3.1. Results of the Hydrology of the Polychrome Overlying Layer
3.2. Results of the GPR Overlying Layer: Attributes
- The vertical fractures condition important water access routes to the innermost parts of the cap, causing pockets or accumulations of relevant moisture in the contact zone between the end of the dolomitic layer and the beginning of the Polychromes layer. This accumulation of moisture in the contact of both layers will generate, as the preferential disintegration of the dolomitic layer is taking place, the percolation of water towards the areas closer to the surface of the Ceiling, generating, therefore, a greater risk for the conservation of the painting by activating new processes of dragging and migration of the painting.
- Vertical fractures, often associated with diagonal planes (detachments), exhibit inclined cleavage surfaces that generate cavities in the rock, forming a porous topology. These cavities, resulting from the intricate interplay between fractures and detachments, serve as potential hydrogeological interconnection pathways, fostering subsurface water flow and enabling seepage and moisture transfer along these lines of weakness. This hydrogeological phenomenon, akin to the “communicating vessels” principle, underscores the structures’ role in helping with water migration through limestone, thus influencing subsurface dynamics. In the alterations seen in Altamira [18], the Polychrome Hall’s ceiling shows a film of discontinuous, irregularly distributed, and sometimes carbonated clays between the limestone substrate and the painting. These clays, subjected to internal tensions from moisture variations, lead to the loss of pigment adhesion and detachment from the support. Concurrently, environmental humidity contributes to carbonate dissolution, promoting mineral decomposition reactions on the limestone surface [93]. Ultimately, losing pigment adhesion is linked to the water’s physical-chemical features, incorporating CO2 and nutrients from the soil [24]. This water reaches the ceiling’s surface through the outer soil cover, causing partial limestone dissolution and forming interconnected depressions. Functioning like a hydrographic network, these depressions transport paint, carbonates, salts, clays, quartz fragments, and dolomite, among other products, to various drip points [40].
- Observations from radargrams indicate that in the southern zone, neighboring the central fracture, moisture presence is notably less pronounced, aligning with the depicted radar imagery. The detected moisture appears to originate from surrounding areas associated with the take-off planes of the northern zone, with the central fracture acting as the distinguishing boundary between these zones. Furthermore, upon surface-level analysis of photogrammetric images in ALT1, particularly at locations with pigment fall, an evident water flow trajectory has been identified. This flow is observed to transport pigment through a network of cracks and fissures that notably align with the general dip of the Ceiling, indicating a directional correlation between the fissures and the flow pattern. This indicates that the greater moisture that influences the southern zone near the central fracture and near the entrance is due to the action or precedence of the northern part near the central fracture but not directly from the south. This tells us of a clear north and south zonation and that the moisture input comes almost exclusively from the central rift to the north. In the south, maybe the lack of moisture is not a sign that the area is better preserved or less affected by internal fractures, but rather that these are sealed, clogged, and have a plugging effect for this moisture, and that the moisture that is recorded comes from other adjacent areas. This is also reflected in the surface of the ceiling because, in the southern zone, there are fewer dripping points and more speleothems, carbonations, or concretions, which indicate that in the past, this zone was active and that these internal fractures percolated moisture or water, which washed paint, but that now this no longer occurs or at least does not occur as significantly as in the northernmost zone.
- Focusing on other possible causes associated with the loss of pigment that could be accelerating the processes of dragging and washing of paint, it is worth mentioning the presence, not constant or permanent, of more surface humidity that as small laminar flows of water are concentrated in the central part of the ceiling of the Polychrome Hall, on both sides of the large fracture sealed with mortar, at about 70 cm in both north and south directions (for example, the control zone ALT1_1 has a distance of 68 cm in the north direction regarding the large central fracture).
- Recent geophysical prospecting studies [41,42] carried out in the cave of Altamira, both from the overlying layer and from inside the Polychrome Hall, have shown that the large central fracture has a vertical development that, from a depth of 1.4 m in relation to the outer overlying layer, penetrates to the ceiling of the Polychrome Hall itself. In addition, the study concludes that the mortar filler applied by injection from the interior over this large fracture penetrates between 21 cm and 30 cm deep. At certain points, this filling is changed/deteriorated, generating a partial percolation of the water flows; however, at the best-preserved points, this filling is acting as a “plug”, diverting the water flows to adjacent areas.
3.3. Hydrology of Polychrome Ceiling
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.; Sirieix, C.; Ferrier, C.; Lacanette-Puyo, D.; Riss, J.; Malaurent, P. A Geophysical Tool for the Conservation of a Decorated Cave—A Case Study for the Lascaux Cave. Archaeol. Prospect. 2005, 22, 283–292. [Google Scholar] [CrossRef]
- Caselles, J.O.; Clapés, J.; Sagasti, J.I.S.; Gracia, V.P.; Santana, C.G.R. Integrated GPR and Laser Vibration Surveys to Preserve Prehistorical Painted Caves: Cueva Pintada Case Study. Int. J. Arch. Herit. 2021, 15, 669–677. [Google Scholar] [CrossRef]
- Hœrlé, S.; Huneau, F.; Salomon, A.; Denis, A. Using the ground-penetrating radar to assess the conservation condition of rock-art sites. Comptes Rendus Geosci. 2007, 339, 536–544. [Google Scholar] [CrossRef]
- Huneau, F.; Denis, A.; Salomon, A. First use of geological radar to assess the conservation condition of a South African rock art site: Game Pass Shelter (KwaZulu-Natal). S. Afr. J. Sci. 2008, 104, 251–254. [Google Scholar]
- Smith, B.W.; Black, J.L.; Mulvaney, K.J.; Hœrlé, S. Monitoring Rock Art Decay: Archival Image Analysis of Petroglyphs on Murujuga, Western Australia. Conserv. Manag. Archaeol. Sites 2021, 23, 198–220. [Google Scholar] [CrossRef]
- Dragovich, D.; Amiraslani, F. Conservation and Co-Management of Rock Art in National Parks: An Australian Case Study. Heritage 2023, 6, 6901–6916. [Google Scholar] [CrossRef]
- Banerjee, R.; Srivastava, P.K. Remote Sensing Based Identification of Painted Rock Shelter Sites: Appraisal Using Advanced Wide Field Sensor, Neural Network and Field Observations. In Remote Sensing Applications in Environmental Research; Society of Earth Scientists Series; Srivastava, P., Mukherjee, S., Gupta, M., Islam, T., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Ravindran, T.R.; Arora, A.K.; Singh, M.; Ota, S.B. On-and off-site Raman study of rock-shelter paintings at world-heritage site of Bhimbetka. J. Raman Spectrosc. 2013, 44, 108–113. [Google Scholar] [CrossRef]
- De Las Heras, C. El Descubrimiento de la Cueva de Altamira; Lasheras, J.A., Ed.; Redescubrir Altamira; Turner: Madrid, Spain, 2003. [Google Scholar]
- Heras Martín, C.; Lasheras, J.A. L’art paléolithique a Altamira. Rev. Monum. Doss. Les Grottes Ornées 2006, 2, 46–49. [Google Scholar]
- de las Heras Martín, C.; Lasheras Corruchaga, J.A. Altamira cave. In Pleistocene and Holocene Hunter-Gatherers in Iberia and the Gibraltar Strait: The Current Archaeological Record; Ramos, R.S., Roura, E.C., de Castro, J.M.B., Ferreras, J.L.A., Eds.; Universidad de Burgos & Fundación Atapuerca: Burgos, Spain, 2014; pp. 615–627. ISBN 978-84-92681-95-2. [Google Scholar]
- Nardino, M.; Prada-Freixedo, A.; Famulari, D.; Brilli, L.; Cavaliere, A.; Carotenuto, F.; Chieco, C.; Gioli, B.; Giordano, T.; Martelli, F.; et al. Intensive campaign on continuous isotopic sampling for environmental criticality in the Stalactites cave of Altamira karst. In Proceedings of the Science and Art IX, Science and Technology Applied to Heritage Conservation, Madrid, Spain, 17–19 October 2022; La Ciencia y el Arte IX. Ciencias y Tecnologías Aplicadas a la Conservación del Patrimonio; Ministerio de Cultura y Deporte: Madrid, Spain, 2023; pp. 159–170. [Google Scholar]
- Sainz, C.; Fábrega, J.; Rábago, D.; Celaya, S.; Fernandez, A.; Fuente, I.; Fernandez, E.; Quindos, J.; Arteche, J.L.; Quindos, L. Use of Radon and CO2 for the Identification and Analysis of Short-Term Fluctuations in the Ventilation of the Polychrome Room Inside the Altamira Cave. Int. J. Environ. Res. Public Health 2022, 19, 3662. [Google Scholar] [CrossRef]
- Cuezva, S. Dinámica Microambiental de un Medio Kárstico Somero (Cueva de Altamira, Cantabria): Microclima, Geomicrobiología y Mecanismos de Interacción Cavidad-Exterior. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2008; p. 320. [Google Scholar]
- Portero García, J.M. Cartografía de la Hoja n.º 34 (Torrelavega) del Mapa Geológico de España, MAGNA, a escala E. 1:50.000 (2.ª Serie); IGME: Madrid, Spain, 1976. [Google Scholar]
- Hoyos, M.; Bustillo, A.; García, A.; Martín, C.; Ortiz, R.; Y Suazo, C. Características Geológico-Kársticas de la Cueva de Altamira (Santillana del Mar, Santander); Informe Ministerio de Cultura: Madrid, Spain, 1981; 81p. [Google Scholar]
- Sánchez, M.A.; Foyo, A.; Tomillo, C.; Iriarte, E. Geological risk assessment of the Altamira Cave: A proposed Natural Risk Index and Safety Factor for the protection of prehistoriccaves. Eng. Geol. 2007, 94, 180–200. [Google Scholar] [CrossRef]
- Hoyos, M. Procesos de alteración de soporte y pintura en diferentes cuevas con arte rupestre del norte de España: Santimamiñe, Arenaza, Altamira y Llonín. In La Protección y Conservación del Arte Rupestre Paleolítico; Principado de Asturias: Oviedo, Spain, 1993; pp. 51–74. [Google Scholar]
- Hoyos, M.; Soler, V.; Sánchez-Moral, S.; Cañaveras, J.C.; Sanz-Rubio, E. Carbon Dioxide Fluxes in Karstic Caves (Altamira and Tito Bustillo Caves, Spain); International Geological Correlation Programme 379 Newsletter; IGCP: Paris, France, 1998; pp. 43–44. [Google Scholar]
- Villar, E. Proyecto Científico Técnico Encaminado a la Conservación de las Pinturas de Altamira; Centro de Investigación y Museo de Altamira; Monografías 5; Ministerio de Cultura: Madrid, Spain, 1979. [Google Scholar]
- Villar, E. Propagación de la onda térmica anual a través de discontinuidades de aire subterráneas. An. Física Ser. B 1986, 82, 132–142. [Google Scholar]
- Villar, E.; Fernández, P.L.; Gutiérrez, I.; Quindós, L.S.; Soto, J. Influence of visitors on carbon dioxide concentrations in Altamira Cave. Cave Sci. 1986, 13, 21–24. [Google Scholar]
- De Las Heras, C.; Lafuente, C.; Gonzalo, B.; Lasheras, J.A.; Blanco, M.; Cirujano, C.; Herrero, A.; del Egido, M. Historia de la conservación de la cueva de Altamira (1868–2012). In Programa de Investigación para la Conservación Preventiva y Régimen de Acceso a la Cueva de Altamira; Guichen, G., Ed.; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2014; Volume II. [Google Scholar]
- Sánchez-Moral, S. Estudio Integral del Estado de Conservación de la Cueva de Altamira y su Arte Paleolítico (2007–2009). Perspectivas Futuras de Conservación. Monografías del Museo Nacional y Centro de Investigación de Altamira, No. 24; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2014. [Google Scholar]
- Sánchez-Moral, S.; Cuezva, S.; García-Antón, E.; Fernández-Cortes, A.; Elez, J.; Benavente, D.; Cañaveras, J.C.; Jurado, V.; Rogerio-Candelera, M.A.; Saiz-Jiménez, Y.C. Microclimatic monitoring in Altamira cave: Two decades of scientific projects for its conservation. In The Conservation of Subterranean Cultural Heritage; Saiz-Jiménez, C., Ed.; CRC Press: London, UK, 2014; pp. 139–144. [Google Scholar]
- Hoyos, M. Altamira en peligro: Consideraciones previas. Foros Banesto sobre el Patrimonio Histórico. Fundación Cultural Banesto: Madrid, Spain, 1994; pp. 182–196. [Google Scholar]
- Ministerio de Cultura y Deporte; Universidad de Cantabria; CSIC; Universidad del País Vasco; de Guichen, G. Programa de Investigación Para la Conservación Preventiva y Régimen de Acceso de la Cueva de Altamira (2012–2014); Ministerio de Cultura y Deporte: Madrid, Spain, 2014; Volume II. [Google Scholar]
- Ministerio de Cultura y Deporte; Universidad de Cantabria; CSIC; Universidad del País Vasco; de Guichen, G. Programa de Investigación Para la Conservación Preventiva y Régimen de Acceso de la Cueva de Altamira (2012–2014); Ministerio de Cultura y Deporte: Madrid, Spain, 2014; Volume IV. [Google Scholar]
- Ford, D.; Williams, P. Karst Hydrogeology and Geomorphology; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Mangin, A. Contribution à L’étude Hydrodynamique Des Aquifères Karstiques. Ph.D. Thesis, Université de Dijon, Dijon, France, 1975. [Google Scholar]
- Dreybrodt, W. Processes in Karst Systems-Physics, Chemistry, and Geology; Physical Environment; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Bögli, A. Karst Hydrology and Physical Speleology; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Class, H.; Bürkle, P.; Sauerborn, T.; Trötschler, O.; Strauch, B.; Zimmer, M. On the role of density-driven dissolution of CO2 in phreatic karst systems. Water Resour. Res. 2021, 57, e2021WR030912. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Class, H.; Keim, L.; Schirmer, L.; Strauch, B.; Wendel, K.; Zimmer, M. Seasonal Dynamics of Gaseous CO2 Concentrations in a Karst Cave Correspond with Aqueous Concentrations in a Stagnant Water Column. Geosciences 2023, 13, 51. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, G.; Wang, J.; Guo, F. The Recharge Process and Influencing Meteorological Parameters Indicated by Cave Pool Hydrology in the Bare Karst Mountainous Area. Sustainability 2021, 13, 1766. [Google Scholar] [CrossRef]
- Jeong, S.-W.; Yum, B.-W.; Ryu, D.-W.; Lee, H.-J.; Jung, B. The Influence of Clay Content on Cave-ins in Tank Model Tests and Monitoring Indicators of Sinkhole Formation. Appl. Sci. 2019, 9, 2346. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Z.; Cheng, F.; Xin, W.; Fayemi, O.; Zhang, W.; Shan, X. Three-Dimensional Geophysical Characterization of Deeply Buried Paleokarst System in the Tahe Oilfield, Tarim Basin, China. Water 2019, 11, 1045. [Google Scholar] [CrossRef]
- Espinasa, L.; Ornelas-García, C.P.; Legendre, L.; Rétaux, S.; Best, A.; Gamboa-Miranda, R.; Espinosa-Pérez, H.; Sprouse, P. Discovery of Two New Astyanax Cavefish Localities Leads to Further Understanding of the Species Biogeography. Diversity 2020, 12, 368. [Google Scholar] [CrossRef]
- Valle, F.J.; Moya, J.S.; y Cendrero, A. Estudio de la roca soporte de las pinturas rupestres de la cueva de Altamira. Zephyrus 1978, XXVIII–XXIX, 5–15. [Google Scholar]
- Bayarri, V.; Prada, A.; García, F.; Díaz-González, L.M.; De Las Heras, C.; Castillo, E.; Fatás, P. Integration of Remote-Sensing Techniques for the Preventive Conservation of Paleolithic Cave Art in the Karst of the Altamira Cave. Remote Sens. 2023, 15, 1087. [Google Scholar] [CrossRef]
- Bayarri, V.; Prada, A.; García, F. A Multimodal Research Approach to Assessing the Karst Structural Conditions of the Ceiling of a Cave with Palaeolithic Cave Art Paintings: Polychrome Hall at Altamira Cave (Spain). Sensors 2023, 23, 9153. [Google Scholar] [CrossRef] [PubMed]
- Forte, E.; Pipan, M.; Casabianca, D.; Di Cuia, R.; Riva, A. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. J. Appl. Geophys 2012, 81, 76–87. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K.J. Seismic attributes—A historical perspective. Geophysics 2005, 70, 3–28. [Google Scholar] [CrossRef]
- Ehret, B. Pattern recognition of geophysical data. Geoderma 2010, 160, 111–125. [Google Scholar] [CrossRef]
- Chen, Q.; Sidney, S. Seismic attribute technology for reservoir forecasting and monitoring. Lead. Edge 1997, 16, 445–448. [Google Scholar] [CrossRef]
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Böniger, U.; Tronicke, J. Improving the interpretability of 3D GPR data using target–specific attributes: Application to tomb detection. J. Archaeol. Sci. 2010, 37, 360–367. [Google Scholar] [CrossRef]
- Corbeanu, R.M.; Mcmechan, G.A.; Szerbiak, R.B.; Soegaard, K. Prediction of 3D fluid permeability and mudstone distributions from ground-penetrating radar (GPR) attributes: Example from the Cretaceous Ferron member, east-central Utah. Geophysics 2002, 67, 1495–1504. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Levi, S.T.; Pipan, M.; Tian, G. Improved high-resolution GPR imaging and characterization of prehistoric archaeological features by means of attribute analysis. J. Archaeol. Sci. 2015, 54, 77–85. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M. Texture Attribute Analysis of GPR Data for Archaeological Prospection. Pure Appl. Geophys. 2016, 173, 2737–2751. [Google Scholar] [CrossRef]
- Bayarri-Cayón, V.; Latova, J.; Castillo, E.; Lasheras, J.A.; De Las Heras, C.; Prada, A. Nueva ortoimagen verdadera del Techo de Polícromos de la Cueva de Altamira. In ARKEOS|Perspectivas em Diálogo, nº 37. XIX International Rock Art Conference IFRAO 2015. Symbols in the Landscape: Rock Art and Its Context. Conference Proceedings; Instituto Terra e Memória: Tomar, Portugal, 2015; pp. 2308–2320. ISBN 978-84-9852-463-5. [Google Scholar]
- Bayarri-Cayón, V.; Castillo, E. Caracterización geométrica de elementos complejos mediante la integración de diferentes técnicas geomáticas. Resultados obtenidos en diferentes cuevas de la Cornisa Cantábrica. In Proceedings of the VIII Semana Geomática Internacional, Barcelona, Spain, 3–5 March 2009. [Google Scholar]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Teunissen, P.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geod. 2015, 89, 217–240. [Google Scholar] [CrossRef]
- TOPCON. Topcon Hyper II GNSS Receiver Specifications. Available online: https://topconcare.com/en/hardware/gnss-receivers/hiper-ii/specifications/ (accessed on 16 October 2023).
- TOPCON. Topcon Tools 8. Technical Datasheet. Available online: https://topconcare.com/en/software/office-applications/topcon-tools-8/ (accessed on 16 October 2023).
- Bayarri, V.; Castillo, E.; Ripoll, S.; Sebastián, M.A. Control of Laser Scanner Trilateration Networks for Accurate Georef-erencing of Caves: Application to El Castillo Cave (Spain). Sustainability 2021, 13, 13526. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2022; Available online: http://qgis.osgeo.org (accessed on 27 July 2023).
- Smith, J. Topographic Analysis in Hydrology. J. Hydrol. Sci. 2015, 60, 775–789. [Google Scholar]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topology. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Ercoli, M.; Pauselli, C.; Cinti, F.R.; Forte, E.; Volpe, R. Imaging of an active fault: Between 3D GPR data and outcrops at the Castrovillari fault, Calabria, Italy. Interpretation 2015, 3, SY57–SY66. [Google Scholar] [CrossRef]
- Tomecka-Suchoń, S. Ground penetrating radar use in flood prevention. Acta Geophys. 2019, 67, 1679–1691. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Reiss, S.; Reicherter, K.; Reuther, C.D. Visualization and characterization of active normal faults and associated sediments by high-resolution GPR. Geol. Soc. Lond. Spec. Publ. 2003, 211, 247–255. [Google Scholar] [CrossRef]
- Van den Bril, K.; Grégoire, C.; Swennen, R.; Lambot, S. Ground-penetrating radar as a tool to detect rock heterogeneities (channels, cemented layers and fractures) in the Luxembourg Sandstone Formation (Grand-Duchy of Luxembourg). Sedimentology 2007, 54, 949–967. [Google Scholar] [CrossRef]
- van Overmeeren, R. Radar Facies of Unconsolidated Sediments in the Netherlands: A Radar Stratigraphy Interpretation Method for Hydrogeology. J. Appl. Geophys. 1998, 40, 1–18. [Google Scholar] [CrossRef]
- Orlando, L. Semiquantitative evaluation of massive rock quality using ground penetrating radar. J. Appl. Geophys. 2003, 52, 1–9. [Google Scholar] [CrossRef]
- Toshioka, T.; Tsuchida, T.; Sasahara, K. Application of GPR to detecting and mapping cracks in rock slopes. J. Appl. Geophys. 1995, 33, 119–124. [Google Scholar] [CrossRef]
- Batayneh, A.T.; Zumlot, T.; Ghrefat, H.; El-Waheidi, M.M.; Nazzal, Y. The Use of Ground Penetrating Radar for Mapping Rock Stratigraphy and Tectonics: Implications for Geotechnical Engineering. J. Earth Sci. 2014, 25, 895–900. [Google Scholar] [CrossRef]
- Pipan, M.; Baradello, L.; Forte, E.; Prizzon, A. GPR study of bedding planes, fractures, and cavities in limestone. In Proceedings of the SPIE 4084, Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia, 23–26 May 2000. [Google Scholar] [CrossRef]
- Bermejo, L.; Ortega, A.I.; Parés, J.M.; Campaña, I.; Bermúdez de Castro, J.M.; Carbonell, E.; Conyers, L.B. Karst feature interpretation using ground-penetrating radar: A case study from the Sierra de Atapuerca, Spain. Geomorphology 2020, 367, 107311. [Google Scholar] [CrossRef]
- Batayneh, A.; Abueladas, A.; Moumani, K. Use of Ground-Penetrating Radar for Assessment of Potential Sinkhole Conditions: An Example from Ghor al Haditha Area, Jordan. Env. Geol. 2002, 41, 977–983. [Google Scholar] [CrossRef]
- Chalikakis, K.; Plagnes, V.; Guerin, R.; Valois, R.; Bosch, F.P. Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeol. J. 2011, 19, 1169–1180. [Google Scholar] [CrossRef]
- Grasmueck, M.; Quintà, M.C.; Pomar, K.; Eberli, G.P. Diffraction imaging of subvertical fractures and karst with full-resolution 3D Ground-Penetrating Radar. Geophys. Prospect. 2013, 61, 907–918. [Google Scholar] [CrossRef]
- García-García, F.; Valls-Ayuso, A.; Benlloch-Marco, J.; Valcuende-Payá, M. An optimization of the work disruption by 3D cavity mapping using GPR: A new sewerage project in Torrente (Valencia, Spain). Constr. Build. Mater. 2017, 154, 1226–1233. [Google Scholar] [CrossRef]
- Sénéchal, P.; Perroud, H.; Sénéchal, G. Interpretation of reflection attributes in a 3-D GPR survey at Vallée d’Ossau, western Pyrenees, France. Geophysics 2000, 65, 1435–1445. [Google Scholar] [CrossRef]
- McClymont, A.F.; Green, A.G.; Streich, R.; Horstmeyer, H.; Tronicke, J.; Nobes, D.C.; Pettinga, J.R.; Campbell, J.K.; Langridge, R.M. Visualization of active faults using geometric attributes of 3D GPR data: An example from the Alpine Fault Zone, New Zealand. Geophysics 2008, 73, 11–23. [Google Scholar] [CrossRef]
- Reis, J.A.; Castro, D.L.; Jesus, T.E.; Filho, F.P. Characterization of collapsed paleocave systems using GPR attributes. J. Appl. Geophys. 2014, 103, 43–56. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, S.; Peng, T.; Peng, H.; Oliver, D.M. Evaluating the structure characteristics of epikarst at a typical peak cluster depression in Guizhou plateau area using ground penetrating radar attributes. Geomorphology 2020, 364, 107015. [Google Scholar] [CrossRef]
- Allroggen, N.; Heincke, B.; Koyan, P.; Wheeler, W.; Rønning, J. 3D GPR attribute classification: A case study from a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard. Geophysics 2020, 87, 1–52. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-Penetrating Radar for Archaeology, 3rd ed.; Rowman and Littlefield Publishers: Lanham, MD, USA; Alta Mira Press: Lanham, MD, USA, 2013; p. 241. [Google Scholar]
- Daniels, D.J. Ground Penetrating Radar, 2nd ed.; IEE Radar, Sonar and Navigation Series 15, Ed.; The Institution of Electrical Engineers: London, UK, 2004; p. 752. [Google Scholar] [CrossRef]
- Toomey, R.S. Geological Monitoring of Caves and Associated Landscapes; Young, R., Norby, L., Eds.; Geological Monitoring: Boulder, CO, USA; Geological Society of America: Boulder, CO, USA, 2009; pp. 27–46. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef]
- Beynen, P.E. Karst Management; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Bayarri, V. Algoritmos de Análisis de Imágenes Multiespectrales e Hiperespectrales para la Documentación e Interpretación del Arte Rupestre. Ph.D. Thesis, Universidad Nacional de Educación a Distancia, Madrid, Spain, May 2020. Available online: http://e-spacio.uned.es/fez/view/tesisuned:ED-Pg-TecInd-Vbayarri (accessed on 25 January 2021).
- Bayarri, V.; Sebastián, M.A.; Ripoll, S. Hyperspectral Imaging Techniques for the Study, Conservation and Management of Rock Art. Appl. Sci. 2019, 9, 5011. [Google Scholar] [CrossRef]
- Bayarri, V.; Castillo, E.; Ripoll, S.; Sebastián, M.A. Improved Application of Hyperspectral Analysis to Rock Art Panels from El Castillo Cave (Spain). Appl. Sci. 2021, 11, 1292. [Google Scholar] [CrossRef]
- Bayarri, V.; Latova, J.; Castillo, E.; Lasheras, J.A.; De Las Heras, C.; Prada, A. Nueva documentación y estudio del arte empleando técnicas hiperespectrales en la Cueva de Altamira. In ARKEOS|Perspectivas em Diálogo, nº 37. XIX International Rock Art Conference IFRAO 2015. Symbols in the Landscape: Rock Art and Its Context. Conference Proceedings; Instituto Terra e Memória: Tomar, Portugal, 2015; ISBN 978-84-9852-463-5. [Google Scholar]
- Ripoll, S.; Bayarri, V.; Muñoz, F.J.; Latova, J.; Gutiérrez, R.; Pecci, H. El arte rupestre de la cueva de El Castillo (Puente Viesgo, Cantabria): Unas reflexiones metodológicas y una propuesta cronológica. In Capítulo en Libro Cien Años de Arte Rupestre Paleolítico Centenario del Descubrimiento de la Cueva de la Peña de Candamo (1914–2014); Ediciones Universidad de Salamanca: Salamanca, Spain, 2014; ISBN 978-84-9012-480-2. [Google Scholar]
- Cendrero, A. Influencia de la composición de la roca soporte en el deterioro de las pinturas de Altamira. In Proceedings of the Altamira Symposium, Santillana del Mar, Spain, 1979; Ministerio de Cultura: Madrid, Spain, 1981; pp. 579–580. [Google Scholar]
- Ontañon, R.; Bayarri, V.; Herrera, J.; Gutierrez, R. The conservation of prehistoric caves in Cantabria, Spain. In The Conservation of Subterranean Cultural Heritage; CRC Press/Balkema: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2014; ISBN 978-1-315-73997-7. [Google Scholar]
- Bernardi, A.; Todorov, V.; Hiristova, J. Microclimatic analysis in St. Stephan’s church, Nessebar, Bulgaria after interventions for the conservation of frescoes. J. Cult. Herit. 2000, 1, 281–286. [Google Scholar] [CrossRef]
- Camuffo, D. The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. J. Cult. Herit. 2002, 3, 155–161. [Google Scholar] [CrossRef]
- Hoyos, M.; Soler, V.; Cañaveras, J.C.; Sánchez-Moral, S.; Sanz-Rubio, E. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar] [CrossRef]
- Zerboni, A.; Villa, F.; Wu, Y.-L.; Solomon, T.; Trentini, A.; Rizzi, A.; Cappitelli, F.; Gallinaro, M. The Sustainability of Rock Art: Preservation and Research. Sustainability 2022, 14, 6305. [Google Scholar] [CrossRef]
- Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Cañaveras, J.C.; Benavente, D.; Duarte, E.; Saiz-Jimenez, C.; Sanchez-Moral, S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). Sci. Total Environ. 2023, 897, 165218. [Google Scholar] [CrossRef] [PubMed]
- Sileo, S.; Terenzio Gizzi, F.; Masini, N. Low cost monitoring approach for the conservation of frescoes: The crypt of St. Francesco d’Assisi in Irsina (Basilicata, Southern Italy). J. Cult. Herit. 2017, 23, 89–99. [Google Scholar] [CrossRef]
- Sammartino, M.P.; Cau, G.; Reale, R.; Ronca, S.; Visco, G. A multidisciplinary diagnostic approach preliminary to the restoration of the country church “San Maurizio” located in Ittiri (SS), Italy. Herit. Sci. 2014, 2, 4. [Google Scholar] [CrossRef]
- Bastian, F.; Jurado, V.; Nováková, A.; Alabouvette, C.; Saiz-Jimenez, C. The microbiology of Lascaux cave. Microbiology 2010, 156, 644–652. [Google Scholar] [CrossRef]
- Cabrera Garrido, J.M. Conservación de la Cueva de Altamira: Sugerencias para un programa de trabajo. In Altamira Symposium; Ministerio de Cultura: Madrid, Spain, 1981; pp. 621–641. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayarri, V.; Prada, A.; García, F.; De Las Heras, C.; Fatás, P. A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation. Remote Sens. 2024, 16, 197. https://doi.org/10.3390/rs16010197
Bayarri V, Prada A, García F, De Las Heras C, Fatás P. A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation. Remote Sensing. 2024; 16(1):197. https://doi.org/10.3390/rs16010197
Chicago/Turabian StyleBayarri, Vicente, Alfredo Prada, Francisco García, Carmen De Las Heras, and Pilar Fatás. 2024. "A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation" Remote Sensing 16, no. 1: 197. https://doi.org/10.3390/rs16010197
APA StyleBayarri, V., Prada, A., García, F., De Las Heras, C., & Fatás, P. (2024). A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation. Remote Sensing, 16(1), 197. https://doi.org/10.3390/rs16010197