Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation
Abstract
:1. Introduction
2. Materials
2.1. Volcanoes Selection
2.2. Satellite Data
3. Materials
3.1. SqueezeNet Classifier
3.2. Random Forest
3.3. Cascading Machine Learning
4. Results
5. Discussion
5.1. Cascading Model Performance
5.2. Quantitative Analysis and Classification of Volcanic Thermal Activity on Target Volcanoes
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rothery, D.A.; Francis, P.W.; Wood, C.A. Volcano Monitoring Using Short Wavelength Infrared Data from Satellites. J. Geophys. Res. Solid Earth 1988, 93, 7993–8008. [Google Scholar] [CrossRef]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-0-521-85945-5. [Google Scholar]
- Ganci, G.; Cappello, A.; Bilotta, G.; Del Negro, C. How the Variety of Satellite Remote Sensing Data over Volcanoes Can Assist Hazard Monitoring Efforts: The 2011 Eruption of Nabro Volcano. Remote Sens. Environ. 2020, 236, 111426. [Google Scholar] [CrossRef]
- Oppenheimer, C.M.M.; Rothery, D.A. Infrared Monitoring of Volcanoes by Satellite. J. Geol. Soc. 1991, 148, 563–569. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Flynn, L.P.; Dean, K.; Pilger, E.; Wooster, M.; Okubo, C.; Mouginis-Mark, P.; Garbeil, H.; Thornber, C.; De la Cruz-Reyna, S.; et al. Real-Time Satellite Monitoring of Volcanic Hot Spots. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 2000, 116, 139–159. [Google Scholar] [CrossRef]
- Francis, P.; Rothery, D. Remote Sensing of Active Volcanoes. Annu. Rev. Earth Planet. Sci. 2000, 28, 81–106. [Google Scholar] [CrossRef]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Hérault, A.; Del Negro, C. Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques. Remote Sens. 2019, 11, 1916. [Google Scholar] [CrossRef]
- Steffke, A.M.; Harris, A.J.L. A Review of Algorithms for Detecting Volcanic Hot Spots in Satellite Infrared Data. Bull. Volcanol. 2011, 73, 1109–1137. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P.; Garbeil, H.; Harris, A.J.L.; Pilger, E. MODVOLC: Near-Real-Time Thermal Monitoring of Global Volcanism. J. Volcanol. Geotherm. Res. 2004, 135, 29–49. [Google Scholar] [CrossRef]
- Higgins, J.; Harris, A. VAST: A Program to Locate and Analyse Volcanic Thermal Anomalies Automatically from Remotely Sensed Data. Comput. Geosci. 1997, 23, 627–645. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-262-33737-3. [Google Scholar]
- Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017; ISBN 978-1-78588-451-1. [Google Scholar]
- Corradino, C.; Amato, E.; Torrisi, F.; Del Negro, C. Data-Driven Random Forest Models for Detecting Volcanic Hot Spots in Sentinel-2 MSI Images. Remote Sens. 2022, 14, 4370. [Google Scholar] [CrossRef]
- Kato, S.; Miyamoto, H.; Amici, S.; Oda, A.; Matsushita, H.; Nakamura, R. Automated Classification of Heat Sources Detected Using SWIR Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102491. [Google Scholar] [CrossRef]
- Del Negro, C.; Amato, E.; Corradino, C.; Torrisi, F.; Ramsey, M.S. Volcano Hazard Monitoring at Mount Etna Using Multispectral Satellite Imagery and Artificial Intelligence. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) from Space. Remote Sens. 2021, 13, 4080. [Google Scholar] [CrossRef]
- Torrisi, F.; Amato, E.; Corradino, C.; Mangiagli, S.; Del Negro, C. Characterization of Volcanic Cloud Components Using Machine Learning Techniques and SEVIRI Infrared Images. Sensors 2022, 22, 7712. [Google Scholar] [CrossRef] [PubMed]
- Corradino, C.; Ramsey, M.S.; Pailot-Bonnétat, S.; Harris, A.J.L.; Negro, C.D. Detection of Subtle Thermal Anomalies: Deep Learning Applied to the ASTER Global Volcano Dataset. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Gama, J.; Brazdil, P. Cascade Generalization. Mach. Learn. 2000, 41, 315–343. [Google Scholar] [CrossRef]
- Mahataa, K.; Sarkarb, A.; Dasb, R.; Dasb, S. Land Use Land Cover Classification by Applying Ensemble Approaches on Multi Temporal Remote Sensing Images. Int. J. Manag. Technol. Eng. 2019. Available online: https://www.researchgate.net/publication/332174353_Land_Use_Land_Cover_Classification_by_applying_Ensemble_Approaches_on_Multi_Temporal_Remote_Sensing_Images (accessed on 17 October 2023).
- Aziz, A.A.; Indahwati; Sartono, B. Improving Prediction Accuracy of Classification Model Using Cascading Ensemble Classifiers. IOP Conf. Ser. Earth Environ. Sci. 2019, 299, 012025. [Google Scholar] [CrossRef]
- Ray, S.; De Sarkar, A. Execution Analysis of Load Balancing Algorithms in Cloud Computing Environment. Int. J. Cloud Comput. Serv. Archit. (IJCCSA) 2012, 2, 1–13. [Google Scholar]
- Sether, A. Cloud Computing Benefits 2016. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2781593 (accessed on 17 October 2023).
- Amato, E.; Corradino, C.; Torrisi, F.; Del Negro, C. A Deep Convolutional Neural Network for Detecting Volcanic Thermal Anomalies from Satellite Images. Remote Sens. 2023, 15, 3718. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Carneiro, T.; Medeiros Da NóBrega, R.V.; Nepomuceno, T.; Bian, G.-B.; De Albuquerque, V.H.C.; Filho, P.P.R. Performance Analysis of Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677–61685. [Google Scholar] [CrossRef]
- Enhanced Volcanic Hot-Spot Detection Using MODIS IR Data: Results from the MIROVA System—Geological Society, London, Special Publications. Available online: https://www.lyellcollection.org/doi/full/10.1144/SP426.5 (accessed on 17 October 2023).
- Eesa, A.S.; Arabo, W.K. A Normalization Methods for Backpropagation: A Comparative Study. Sci. J. Univ. Zakho 2017, 5, 319–323. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50× Fewer Parameters and <0.5 MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Lee, H.J.; Ullah, I.; Wan, W.; Gao, Y.; Fang, Z. Real-Time Vehicle Make and Model Recognition with the Residual SqueezeNet Architecture. Sensors 2019, 19, 982. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Huang, J.; Lu, X.; Chen, L.; Sun, H.; Wang, S.; Fang, G. Accurate Identification of Pine Wood Nematode Disease with a Deep Convolution Neural Network. Remote Sens. 2022, 14, 913. [Google Scholar] [CrossRef]
- Lin, W.; Wu, Z.; Lin, L.; Wen, A.; Li, J. An Ensemble Random Forest Algorithm for Insurance Big Data Analysis. IEEE Access 2017, 5, 16568–16575. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Paul, A.; Mukherjee, D.P.; Das, P.; Gangopadhyay, A.; Chintha, A.R.; Kundu, S. Improved Random Forest for Classification. IEEE Trans. Image Process. 2018, 27, 4012–4024. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Calvari, S.; D’Auria, L.; Traglia, F.D.; Layer, L.; Macedonio, G.; Caputo, T.; Cesare, W.D.; Ganci, G.; Martini, M.; et al. Variations of Stromboli Activity Related to the 2019 Paroxysmal Phase Revealed by SOM Clustering of Seismo-Acoustic Data and Its Comparison with Video Recordings and GBInSAR Measurements. In Proceedings of the EGU General Assembly, Vienna, Austria, 23–27 May 2022. [Google Scholar]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Bruno, V.; Ciancitto, F.; Di Lieto, B.; Gambino, S.; Garcia, A.; Giudicepietro, F.; Inguaggiato, S.; et al. Multi-Parametric Study of an Eruptive Phase Comprising Unrest, Major Explosions, Crater Failure, Pyroclastic Density Currents and Lava Flows: Stromboli Volcano, 1 December 2020–30 June 2021. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Cappello, A.; Ganci, G.; Bilotta, G.; Hérault, A.; Zago, V.; Del Negro, C. Satellite-Driven Modeling Approach for Monitoring Lava Flow Hazards during the 2017 Etna Eruption. Ann. Geophys. 2019, 62. [Google Scholar] [CrossRef]
- Amato, E. Machine Learning and Best Fit Approach to Map Lava Flows from Space. Il Nuovo C. C. 2022, 45, 1–12. [Google Scholar]
- Marchese, F.; Pergola, N.; Telesca, L. Investigating the Temporal Fluctuations in Satellite Advanced Very High Resolution Radiometer Thermal Signals Measured in the Volcanic Area of Etna (Italy). Fluct. Noise Lett. 2006, 6, L305–L316. [Google Scholar] [CrossRef]
- Moore, C.; Wright, T.; Hooper, A.; Biggs, J. The 2017 Eruption of Erta ’Ale Volcano, Ethiopia: Insights Into the Shallow Axial Plumbing System of an Incipient Mid-Ocean Ridge. Geochem. Geophys. Geosyst. 2019, 20, 5727–5743. [Google Scholar] [CrossRef]
CLASSES | DESCRIPTION |
---|---|
No Volcanic Activity [NVA] | Clear scenes without any thermal volcanic activity |
Isolated Volcanic Thermal Anomalies [ITA] | Any scene containing isolated, spatially confined thermal anomalies |
Extended Volcanic Thermal Anomalies [ETA] | Any scene containing distributed, spatially extended thermal anomalies |
Cloudy-Sky Condition [CSC] | Scenes partially/totally containing clouds where eventual thermal anomalies are obscured |
CASCADING | Real Values | ||||
---|---|---|---|---|---|
Predicted | No Volcanic Activity | Isolated Volcanic Thermal Anomalies | Extended Volcanic Thermal Anomalies | Cloudy-Sky Condition | |
No Volcanic Activity | 132 | 7 | 6 | 2 | |
Isolated Volcanic Thermal Anomalies | 7 | 563 | 8 | 16 | |
Extended Volcanic Thermal Anomalies | 0 | 9 | 132 | 0 | |
Cloudy-Sky Condition | 7 | 17 | 4 | 584 |
Precision | Recall | F1-Score | ||||
---|---|---|---|---|---|---|
SN | CASCADING | SN | CASCADING | SN | CASCADING | |
No Volcanic Activity | 0.48 | 0.90 | 0.74 | 0.90 | 0.58 | 0.90 |
Isolated Volcanic Thermal Anomalies | 0.90 | 0.95 | 0.59 | 0.94 | 0.71 | 0.95 |
Extended Volcanic Thermal anomalies | 0.92 | 0.94 | 0.87 | 0.88 | 0.89 | 0.91 |
Cloudy-Sky Condition | 0.81 | 0.95 | 0.99 | 0.97 | 0.89 | 0.96 |
SN | Real Values | ||||
---|---|---|---|---|---|
Predicted | No Volcanic Activity | Isolated Volcanic Thermal Anomalies | Extended Volcanic Thermal Anomalies | Cloudy-Sky Condition | |
No Volcanic Activity | 108 | 109 | 1 | 6 | |
Isolated Volcanic Thermal Anomalies | 29 | 353 | 8 | 3 | |
Extended Volcanic Thermal Anomalies | 0 | 12 | 131 | 0 | |
Cloudy-Sky Condition | 9 | 122 | 10 | 593 |
SN | Cascading | |
---|---|---|
Micro F1-Score | 0.79 | 0.95 |
Macro F1-Score | 0.77 | 0.93 |
Weighted F1-Score | 0.80 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cariello, S.; Corradino, C.; Torrisi, F.; Del Negro, C. Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation. Remote Sens. 2024, 16, 171. https://doi.org/10.3390/rs16010171
Cariello S, Corradino C, Torrisi F, Del Negro C. Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation. Remote Sensing. 2024; 16(1):171. https://doi.org/10.3390/rs16010171
Chicago/Turabian StyleCariello, Simona, Claudia Corradino, Federica Torrisi, and Ciro Del Negro. 2024. "Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation" Remote Sensing 16, no. 1: 171. https://doi.org/10.3390/rs16010171
APA StyleCariello, S., Corradino, C., Torrisi, F., & Del Negro, C. (2024). Cascading Machine Learning to Monitor Volcanic Thermal Activity Using Orbital Infrared Data: From Detection to Quantitative Evaluation. Remote Sensing, 16(1), 171. https://doi.org/10.3390/rs16010171