SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering
Abstract
:1. Introduction
2. Methodology
2.1. Architecture of SDSNet
2.2. Semantic Information Extraction Module
2.3. Multi-Level Merge Module
2.4. Semantic Information Fusion Module
2.5. Loss Function
3. Experiment
3.1. Dataset Introduction
3.2. Experimental Details
3.2.1. Experimental Settings
3.2.2. Evaluation Metrics
4. Experimental Results and Analysis
4.1. Ablation Study
4.2. Comparative Experiment Analysis
4.2.1. Experiments on the WHU Building Dataset
4.2.2. Experiments on the Massachusetts Building Dataset
5. Discussion
5.1. Visualization Analysis
5.1.1. Visualization Analysis on the WHU Building Dataset
5.1.2. Visualization Analysis on the Massachusetts Building Dataset
5.2. Experimental Result Analysis
5.3. The Balance between Parameter Cost and the Improvement in Building Extraction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Enemark, S.; Williamson, I.; Wallace, J. Building modern land administration systems in developed economies. Surveyor 2005, 50, 51–68. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Dhande, A.; Malik, R. Design of a highly efficient crop damage detection ensemble learning model using deep convolutional networks. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 10811–10821. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Nie, P. Tracking the history of urban expansion in Guangzhou (China) during 1665–2017: Evidence from historical maps and remote sensing images. Land Use Policy 2022, 112, 105773. [Google Scholar] [CrossRef]
- Xiaoli, L.; Zhiqiang, L.; Jiansi, Y.; Yaohui, L.; Bo, F.; Wenhua, Q.; Xiwei, F. Spatiotemporal characteristics of earthquake disaster losses in China from 1993 to 2016. Nat. Hazards 2018, 94, 843–865. [Google Scholar]
- Liu, Y.; Li, Z.; Wei, B.; Li, X.; Fu, B. Seismic vulnerability assessment at urban scale using data mining and GIScience technology: Application to Urumqi (China). Geomat. Nat. Hazards Risk 2019, 10, 958–985. [Google Scholar] [CrossRef]
- Wang, J.; Xue, Y.; Xiao, J.; Shi, D. Diffusion Characteristics of Airflow and CO in the Dead-End Tunnel with Different Ventilation Parameters after Tunneling Blasting. ACS Omega 2023, 8, 36269–36283. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Z.; Peng, D.; Benediktsson, J.A.; Liu, B.; Zou, L.; Li, J.; Plaza, A. Remotely sensed big data: Evolution in model development for information extraction [point of view]. Proc. IEEE 2019, 107, 2294–2301. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.; Feng, R.; Yan, J. Remote sensing and social sensing data fusion for fine-resolution population mapping with a multi-model neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5973–5987. [Google Scholar] [CrossRef]
- Li, F.; Li, J.; Han, W.; Feng, R.; Wang, L. Unsupervised Representation High-Resolution Remote Sensing Image Scene Classification via Contrastive Learning Convolutional Neural Network. Photogramm. Eng. Remote Sens. J. Am. Soc. Photogramm. 2021, 87, 577–591. [Google Scholar] [CrossRef]
- Li, L.; Tian, T.; Li, H.; Wang, L. SE-HRNet: A Deep High-Resolution Network with Attention for Remote Sensing Scene Classification. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Li, F.; Wang, L.; Han, W. Ensemble Model with Cascade Attention Mechanism for High-Resolution Image Scene Classification. Opt. Express 2020, 28, 22358–22387. [Google Scholar] [CrossRef] [PubMed]
- Sirmaek, B.; Unsalan, C. Urban-Area and Building Detection Using SIFT Keypoints and Graph Theory. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1156–1167. [Google Scholar] [CrossRef]
- Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering. ISPRS J. Photogramm. Remote Sens. 1999, 54, 50–60. [Google Scholar] [CrossRef]
- Zhong, S.H.; Huang, J.J.; Xie, W.X. A new method of building detection from a single aerial photograph. In Proceedings of the International Conference on Signal Processing, Porto, Portugal, 26–29 July 2008; pp. 1219–1222. [Google Scholar]
- Yong, L.I.; Huayi, W.U. Adaptive Building Edge Detection by Combining Lidar Data and Aerial Images. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Conference, Beijing, China, 3–11 July 2008. [Google Scholar]
- Ferraioli, G. Multichannel InSAR Building Edge Detection. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1224–1231. [Google Scholar] [CrossRef]
- Tiwari, P.S.; Pande, H. Use of laser range and height texture cues for building identification. J. Indian Soc. Remote Sens. 2008, 36, 227–234. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Zhang, C.; Fraser, C.S. Improved building detection using texture information. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 38, 143–148. [Google Scholar] [CrossRef]
- Liow, Y.T.; Pavlidis, T. Use of Shadows for Extracting Buildings in Aerial Images. Comput. Vis. Graph. Image Process. 1990, 49, 242–277. [Google Scholar] [CrossRef]
- Chen, D.; Shang, S.; Wu, C. Shadow-based Building Detection and Segmentation in High-resolution Remote Sensing Image. J. Multimed. 2014, 9, 181–188. [Google Scholar] [CrossRef]
- Sun, J.; He, K.; Girshick, R.; Ren, S. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 640–651. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Liu, Y.; Piramanayagam, S.; Monteiro, S.T.; Saber, E. Dense Semantic Labeling of Very-High-Resolution Aerial Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Wang, Z.; Xu, N.; Wang, B.; Liu, Y.; Zhang, S. Urban building extraction from high-resolution remote sensing imagery based on multi-scale recurrent conditional generative adversarial network. GIScience Remote Sens. 2022, 59, 861–884. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, Z.; Wang, B.; Li, S.; Liu, H.; Xu, D.; Ma, C. BOMSC-Net: Boundary optimization and multi-scale context awareness based building extraction from high-resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5618617. [Google Scholar] [CrossRef]
- Xu, S.; Deng, B.; Meng, Y.; Liu, G.; Han, J. ReA-Net: A Multiscale Region Attention Network with Neighborhood Consistency Supervision for Building Extraction From Remote Sensing Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9033–9047. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial Image Labeling Benchmark. In Proceedings of the Igarss IEEE International Geoscience & Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- A, X.Z.; A, L.H.; B, G.S.X.A.; C, J.G.A. Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss—ScienceDirect. ISPRS J. Photogramm. Remote Sens. 2020, 170, 15–28. [Google Scholar]
- Li, X.; Li, X.; Zhang, L.; Cheng, G.; Tong, Y. Improving Semantic Segmentation via Decoupled Body and Edge Supervision. arXiv 2020, arXiv:2007.10035. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, H.; Liao, Y.; Yang, H.; Yang, G.; Zhang, L. A Local-Global Dual-Stream Network for Building Extraction From Very-High-Resolution Remote Sensing Images. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1269–1283. [Google Scholar] [CrossRef] [PubMed]
- Tejeswari, B.; Sharma, S.K.; Kumar, M.; Gupta, K. Building footprint extraction from space-borne imagery using deep neural networks. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 641–647. [Google Scholar] [CrossRef]
- He, N.; Fang, L.; Plaza, A. Hybrid first and second order attention Unet for building segmentation in remote sensing images. Sci. China (Inf. Sci.) 2020, 63, 69–80. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, H.; Yao, S.; Hu, Z. Building Extraction from High-Resolution Remote Sensing Imagery Based on Multi-Scale Feature Fusion and Enhancement. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 55–60. [Google Scholar] [CrossRef]
- Liu, Y.; Gross, L.; Li, Z.; Li, X.; Qi, W. Automatic Building Extraction on High-Resolution Remote Sensing Imagery Using Deep Convolutional Encoder-Decoder With Spatial Pyramid Pooling. IEEE Access 2019, 7, 128774–128786. [Google Scholar] [CrossRef]
- Khan, S.D.; Alarabi, L.; Basalamah, S. An encoder–decoder deep learning framework for building footprints extraction from aerial imagery. Arab. J. Sci. Eng. 2023, 48, 1273–1284. [Google Scholar] [CrossRef]
- Xu, S.; Du, M.; Meng, Y.; Liu, G.; Han, J.; Zhan, B. MDBES-Net: Building Extraction From Remote Sensing Images Based on Multiscale Decoupled Body and Edge Supervision Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 519–534. [Google Scholar] [CrossRef]
- Kang, W.; Xiang, Y.; Wang, F.; You, H. EU-Net: An Efficient Fully Convolutional Network for Building Extraction from Optical Remote Sensing Images. Remote Sens. 2019, 11, 2813. [Google Scholar] [CrossRef]
- Wang, Y. JointNet: A Common Neural Network for Road and Building Extraction. Remote Sens. 2019, 11, 696. [Google Scholar]
- Guo, M.; Liu, H.; Xu, Y.; Huang, Y. Building Extraction Based on U-Net with an Attention Block and Multiple Losses. Remote Sens. 2020, 12, 1400. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Zhao, T. Semantic Segmentation of Urban Buildings from VHR Remote Sensing Imagery Using a Deep Convolutional Neural Network. Remote Sens. 2019, 11, 1774. [Google Scholar] [CrossRef]
- Ye, Z.; Fu, Y.; Gan, M.; Deng, J.; Wang, K. Building Extraction from Very High Resolution Aerial Imagery Using Joint Attention Deep Neural Network. Remote Sens. 2019, 11, 2970. [Google Scholar] [CrossRef]
- Zhu, Q.; Liao, C.; Hu, H.; Mei, X.; Li, H. MAP-Net: Multiple Attending Path Neural Network for Building Footprint Extraction From Remote Sensed Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6169–6181. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef]
- Lin, J.; Jing, W.; Song, H.; Chen, G. ESFNet: Efficient Network for Building Extraction from High-Resolution Aerial Images. IEEE Access 2019, 7, 54285–54294. [Google Scholar] [CrossRef]
- Wang, H.; Miao, F. Building extraction from remote sensing images using deep residual U-Net. Eur. J. Remote Sens. 2022, 55, 71–85. [Google Scholar] [CrossRef]
- Hosseinpour, H.; Samadzadegan, F.; Javan, F.D. CMGFNet: A deep cross-modal gated fusion network for building extraction from very high-resolution remote sensing images. ISPRS J. Photogramm. Remote Sens. 2022, 184, 96–115. [Google Scholar] [CrossRef]
- Li, X.; Yao, X.; Fang, Y. Building-A-Nets: Robust Building Extraction From High-Resolution Remote Sensing Images With Adversarial Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3680–3687. [Google Scholar] [CrossRef]
- Beal, J.; Kim, E.; Tzeng, E.; Park, D.H.; Kislyuk, D. Toward Transformer-Based Object Detection. arXiv 2020, arXiv:2012.09958. [Google Scholar]
- Zhou, D.; Wang, G.; He, G.; Long, T.; Luo, B. Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network. Sensors 2020, 20, 7241. [Google Scholar] [CrossRef]
- Guo, H.; Shi, Q.; Du, B.; Zhang, L.; Ding, H. Scene-Driven Multitask Parallel Attention Network for Building Extraction in High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4287–4306. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, D.; Ma, A.; Zhong, Y.; Xu, K. Multiscale U-Shaped CNN Building Instance Extraction Framework with Edge Constraint for High-Spatial-Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6106–6120. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Yang, H.; Wu, P.; Yao, X.; Wu, Y.; Wang, B.; Xu, Y. Building Extraction in Very High Resolution Imagery by Dense-Attention Networks. Remote Sens. 2018, 10, 1768. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Computer Society, Pittsburgh, PA, USA, 11–13 July 2016. [Google Scholar]
- Chen, K.; Zou, Z.; Shi, Z. Building extraction from remote sensing images with sparse token transformers. Remote Sens. 2021, 13, 4441. [Google Scholar] [CrossRef]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Li, M. Bag of Tricks for Image Classification with Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto (Canada), Toronto, ON, Canada, 2013. [Google Scholar]
- Contributors, M. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. 2020. Available online: https://github.com/open-mmlab/mmsegmentation (accessed on 15 January 2023).
- Yuan, Y.; Chen, X.; Wang, J. Object-Contextual Representations for Semantic Segmentation. arXiv 2019, arXiv:1909.11065. [Google Scholar]
- Wang, L.; Fang, S.; Meng, X.; Li, R. Building extraction with vision transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5625711. [Google Scholar] [CrossRef]
- Zhang, R.; Wan, Z.; Zhang, Q.; Zhang, G. DSAT-Net: Dual Spatial Attention Transformer for Building Extraction from Aerial Images. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6008405. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Q.; Zhang, G. SDSC-UNet: Dual Skip Connection ViT-based U-shaped Model for Building Extraction. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6005005. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
ResNet50-C | SIE | MLM | OA | IoU | F1-Score |
---|---|---|---|---|---|
✓ | 92.73 | 66.06 | 79.56 | ||
✓ | ✓ | 92.81 | 66.73 | 80.05 | |
✓ | ✓ | 93.53 | 69.33 | 81.89 | |
✓ | ✓ | ✓ | 94.05 | 71.6 | 83.45 |
ResNet50-C | SIE | MLM | OA | IoU | F1-Score |
---|---|---|---|---|---|
✓ | 98.55 | 87.71 | 93.45 | ||
✓ | ✓ | 98.68 | 88.74 | 94.03 | |
✓ | ✓ | 98.67 | 88.60 | 93.95 | |
✓ | ✓ | ✓ | 98.86 | 90.17 | 94.83 |
Model Name | OA (%) | IoU (%) | Recall (%) | F1-Score (%) | Precision (%) | Parameters (M) | GFLOPs |
---|---|---|---|---|---|---|---|
DANet [60] | 98.43 | 86.81 | 93.06 | 92.94 | 92.81 | 49.82 | 199.04 |
Deeplabv3 [36] | 98.59 | 87.95 | 92.65 | 93.59 | 94.55 | 68.1 | 269.64 |
Deeplabv3+ [37] | 98.69 | 88.87 | 93.68 | 94.11 | 94.54 | 43.58 | 176.22 |
OCRNet [68] | 98.59 | 87.86 | 91.59 | 93.54 | 95.57 | 36.51 | 152.87 |
PSPNet [62] | 98.62 | 88.21 | 92.94 | 93.74 | 94.54 | 48.96 | 178.44 |
Segformer-b5 [72] | 98.58 | 87.92 | 92.94 | 93.57 | 94.21 | 81.97 | 183.3 |
U-Net [34] | 98.64 | 88.38 | 92.96 | 93.83 | 94.72 | 29.06 | 202.56 |
MAP-Net [50] | 98.77 | 89.65 | 95.65 | 94.54 | 94.72 | 24.00 | 188.76 |
STT [63] | 98.64 | 88.6 | 94.73 | 93.96 | 93.19 | 18.74 | 104.5 |
BuildFormer [69] | 98.60 | 88.09 | 92.86 | 93.67 | 94.50 | 40.52 | 117.12 |
DSAT-Net [70] | 98.46 | 87.01 | 92.46 | 93.06 | 93.65 | 48.50 | 57.75 |
SDSC-UNet [71] | 98.79 | 89.67 | 94.75 | 94.55 | 94.36 | 21.32 | 29.81 |
SDSNet | 98.86 | 90.17 | 94.38 | 94.83 | 95.29 | 65.14 | 241.93 |
Model Name | OA (%) | IoU (%) | Recall (%) | F1-Score (%) | Precision (%) |
---|---|---|---|---|---|
DANet | 92.94 | 66.97 | 76.98 | 80.22 | 83.74 |
Deeplabv3 | 92.78 | 66.4 | 76.71 | 79.81 | 83.17 |
Deeplabv3+ | 93.82 | 70.54 | 79.56 | 82.72 | 86.15 |
OCRNet | 92.84 | 66.82 | 77.51 | 80.11 | 82.88 |
PSPNet | 92.23 | 65.29 | 78.59 | 79 | 79.41 |
Segformer-b5 | 93.23 | 68.02 | 77.36 | 80.96 | 84.92 |
U-Net | 93.56 | 68.91 | 76.71 | 81.59 | 87.14 |
SDSNet | 94.05 | 71.6 | 80.67 | 83.45 | 86.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tian, M.; Zhang, Z.; He, K.; Wang, S.; Liu, Y.; Dong, Y. SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering. Remote Sens. 2024, 16, 169. https://doi.org/10.3390/rs16010169
Wang X, Tian M, Zhang Z, He K, Wang S, Liu Y, Dong Y. SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering. Remote Sensing. 2024; 16(1):169. https://doi.org/10.3390/rs16010169
Chicago/Turabian StyleWang, Xudong, Mingliang Tian, Zhijun Zhang, Kang He, Sheng Wang, Yan Liu, and Yusen Dong. 2024. "SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering" Remote Sensing 16, no. 1: 169. https://doi.org/10.3390/rs16010169
APA StyleWang, X., Tian, M., Zhang, Z., He, K., Wang, S., Liu, Y., & Dong, Y. (2024). SDSNet: Building Extraction in High-Resolution Remote Sensing Images Using a Deep Convolutional Network with Cross-Layer Feature Information Interaction Filtering. Remote Sensing, 16(1), 169. https://doi.org/10.3390/rs16010169