Impact Eichhornia crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal Sentinel-2 Images
Abstract
:1. Introduction
2. Study Area and Satellite Data
2.1. Study Area
2.2. Satellite Data and Pre-Process
3. Methods
3.1. Eichhornia crassipes and Water Body Segmentation
- (1)
- Bimodal histogram initial segmentation based on OHSAT
- (2)
- Unimodal histogram initial segmentation
- (3)
- Optimized segmentation and accuracy assessment
3.2. Co-Variation Spatiotemporal Dynamic Analysis
4. Results and Analysis
4.1. Spatio-Temporal Changes and Trends of Eichhornia crassipes and Water Quality
4.2. The Impact of the Scale of Eichhornia crassipes on Water Quality
4.3. The Effect of Eichhornia crassipes Growth on Water Quality
5. Discussion
5.1. Accurate Segmentation of Water Bodies and Eichhornia crassipes
5.2. The Impact of Eichhornia crassipes Cultivation on NDVI of Eutrophic Water Bodies
5.3. Potential and Limitations of Multi-Temporal and Multi-Spectral Remote Sensing for Ecological Environment Monitoring
6. Conclusions
- (1)
- A combination of the OHSAT method based on NDWI data and the empirical threshold segmentation method based on NDVI, along with a small amount of manual inspection and correction, can achieve accurate segmentation of Eichhornia crassipes and water bodies in large-scale time series remote sensing data.
- (2)
- The area and growth of Eichhornia crassipes have a certain periodic trend under the influence of phenology. Due to the influence of natural environment, the growth of Eichhornia crassipes also varies to some extent inter-annually, and the growth period may be advanced or delayed. The area also has local fluctuation due to external factors such as wind and waves. In the decline period, the time and frequency of area reduction are affected by the harvest operation, which also considers the growth situation and has certain changes inter-annually, which has a positive effect on maximizing pollution control effectiveness.
- (3)
- Under natural conditions, the higher algae content makes the NDVI of eutrophic water bodies show a periodic trend similar to that of vegetation phenology. However, due to Eichhornia crassipes planting, differences in inter-annual meteorological conditions, and the influence of wind and waves, there are some random changes in the scale and spatial distribution of algal bloom grading regions.
- (4)
- The combination of Eichhornia crassipes planting area and growth is inversely proportional to the NDVI of eutrophic water bodies in the region, which has a significant impact on the overall periodic trend of water body NDVI. This can effectively reduce the level of water body NDVI and the risk of moderate and severe algal blooms during the rising and falling period of water body NDVI. In terms of spatial distribution, the enrichment of algae and nitrogen and phosphorus pollutants by Eichhornia crassipes in eutrophic water bodies leads to a regular distribution of the degree of algal bloom from the planting area to the outside, which can be removed by engineering operations to eliminate the concentrated accumulation of algae and nitrogen and phosphorus pollutants.
Author Contributions
Funding
Conflicts of Interest
References
- Peters, N.E.; Meybeck, M.; Chapman, D.V. Effects of Human Activities on Water Quality. Encycl. Hydrol. Sci. 2006. [Google Scholar] [CrossRef]
- Zhang, Z.; Mei, Z.P. Effects of human activities on the ecological changes of lakes in China. GeoJournal 1996, 40, 17–24. [Google Scholar] [CrossRef]
- Biswajit, B.; Kamal, U.A. A review on lake eutrophication dynamics and recent developments in lake modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- National Remote Sensing Center of China, Global Ecological Environment of Typical Lakes in Annual Report on Global Ecological and Environmental Remote Sensing Monitoring 2021. Available online: https://chinageoss.cn/knowledgehub/report/reportDetail/63a47bb6f64eb66545fa029d (accessed on 17 April 2023).
- Chen, Q.; Ni, Z.; Wang, S.; Guo, Y.; Liu, S. Climate change and human activities reduced the burial efficiency of nitrogen and phosphorus in sediment from Dianchi Lake, China. J. Clean. Prod. 2020, 274, 122839. [Google Scholar] [CrossRef]
- He, J.; Xu, X.; Yang, Y.; Wu, X.; Wang, L.; Li, S.; Zhou, H.B. Problems and effects of comprehensive management of water environment in Lake Dianchi. J. Lake Sci. 2015, 27, 195–199. [Google Scholar]
- Yang, F.; Xu, Q.J.; Song, Y.H.; Zhou, X.; Liu, X.; Yan, C.; Huang, L. Evolution trend, treatment process and effect of water ecological environment in Dianchi Lake Basin. J. Environ. Eng. Technol. 2022, 12, 633–643. [Google Scholar]
- Zhu, X.; Li, B.G.; Wang, S.R. Treatment of blue algae outbreak in Taihu Lake. Water Resour. Prot. 2020, 36, 106–111. [Google Scholar]
- Wu, H.Y.; Jia, G.H.; Xu, B.; Shao, Y.T.; Zhao, X.Q. Analysis of variation and driving factors of total phosphorus in Lake Taihu, 1980–2020. J. Lake Sci. 2021, 33, 974–991. [Google Scholar]
- Zhu, G.W.; Qin, B.Q.; Zhang, Y.L. Fluctuation of phosphorus concentration in Lake Taihu in the past 70 years and future control strategy. J. Lake Sci. 2021, 33, 957–973. [Google Scholar]
- Zhang, M.; Kong, F.X. The process, spatial and temporal distributions and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 2015, 27, 791–798. [Google Scholar]
- Zhang, M.; Shi, X.; Yang, Z.; Chen, K. The variation of water quality from 2012 to 2018 in Lake Chaohu and the mitigating strategy on cyanobacterial blooms. J. Lake Sci. 2020, 32, 11–20. [Google Scholar]
- Muhoyi, H.; Gumindoga, W.; Mhizha, A.; Misi, N.N.; Nondo, N. Water quality monitoring using remote sensing, Lower Manyame Sub-catchment, Zimbabwe. Water Pract. Technol. 2022, 17, 1347–1357. [Google Scholar] [CrossRef]
- Ritchie, J.; Zimba, P.; Everitt, J. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Malahlela, O.E. Spatio-temporal assessment of inland surface water quality using remote sensing data in the wake of changing climate. In Proceedings of the IOP Conference Series: Earth and Environmental Science, West Java, Indonesia, 29 August 2019; Volume 227, p. 062012. [Google Scholar]
- He, Y.L.; Xiong, Q.L.; Luo, X.; Li, T.Y.; Yu, L. Study on spatio-temporal changes of water bloom in Dianchi Lake based on NDVI. Ecol. Environ. Sci. 2019, 28, 555–563. [Google Scholar]
- Li, Y.L.; Zhang, Y.L. Quantitative Estimation of Total Suspended Matter and Chlorophyll a Concentration of Taihu Lake in Summer Using TM Data. Remote Sens. Inf. 2008, 6, 22–27+80. [Google Scholar]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef]
- Liu, H.Q.; Ren, H.K.; Niu, X.X.; Xia, P. Extraction of cyanobacteria bloom in Chaohu Lake based on Sentinel-2 remote sensing images. Ecol. Environ. Sci. 2021, 30, 146–155. [Google Scholar]
- Yue, A.; Zeng, Q.W.; Wang, H.J. Remote Sensing Long-term Monitoring of Cyanobacterial Blooms in Yuqiao Reservoir. Remote Sens. Technol. Appl. 2020, 35, 694–701. [Google Scholar]
- Hu, L.; Gan, S.; Yuan, X.; Li, R.; Bi, R. Study on the spatial distribution characteristics of cyanobacteria bloom in Dianchi Lake based on GF5. Laser Infrared 2021, 51, 237–243. [Google Scholar]
- Pu, J.; Song, K.; Lv, Y.; Liu, G.; Fang, C.; Hou, J.; Wen, Z. Distinguishing Algal Blooms from Aquatic Vegetation in Chinese Lakes Using Sentinel 2 Image. Remote Sens. 2022, 14, 1988. [Google Scholar] [CrossRef]
- Feng, L. Key issues in detecting lacustrine cyanobacterial bloom using satellite remote sensing. J. Lake Sci. 2021, 33, 647–652. [Google Scholar] [CrossRef]
- Li, J.; Wu, D.; Wu, Y.; Liu, H.; Shen, Q.; Zhang, H. Identification of algae-bloom and aquatic macrophytes in Lake Taihu from in situ measured spectra data. J. Lake Sci. 2009, 21, 215–222. [Google Scholar]
- Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Newete, S.W.; Byrne, M.J. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ. Sci. Pollut. Res. 2016, 23, 10630–10643. [Google Scholar] [CrossRef]
- Zhou, Y.; Stepanenko, A.; Kishchenko, O.; Xu, J.; Borisjuk, N. Duckweeds for Phytoremediation of Polluted Water. Plants 2023, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Dhote, S.; Dixit, S. Water quality improvement through macrophytes—A review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef]
- Wen, X.Z.; Liu, H.Q.; Zhang, Y.Y.; Han, Y.P.; Qin, H.J.; Zhang, Z.Y. Comparative Studies on Nitrogen Removal between Eichhornia crassipes and Pistia stratiotes in Lake Dianchi Caohai, China. J. Agric. Resour. Environ. 2015, 32, 388–394. [Google Scholar]
- Zhang, Z.Y.; Xu, C.F.; Yan, S.H.; Wen, X.Z.; Qin, H.J.; Wang, Y.; Liu, H.Q. Improving water quality and balance of nitrogen and phosphorus in Dianchi lake based on ecological restoration with Eichhornia crassipes. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2017, 33, 235–242. [Google Scholar]
- Polprasert, C.; Kongsricharoern, N.; Kanjanaprapin, W. Production of feed and fertilizer from water hyacinth plants in the tropics. Waste Manag. Res. 1994, 12, 3–11. [Google Scholar] [CrossRef]
- Opande, G.O.; Onyango, J.C.; Wagai, S.O. Lake victoria: The water hyacinth [Eichhornia crassipes (Mart.) Solms] its socio-economic effects, control measures and resurgence in the Winam gulf. Limnol.-Ecol. Manag. Inland Waters 2004, 34, 105–109. [Google Scholar] [CrossRef]
- Chen, B. Ecological Engineering of Water Hyacintth (Eichhornia crassipes) in the watershed: Control and Utilization. Ph.D. Thesis, Environmental Science & Engineering college of Tongji University, Shanghai, China, 2007; pp. 58–69. [Google Scholar]
- Wu, F.Q.; Shen, S.K.; Wang, Y.H.; Feng, X.Y.; Wang, Q.; Wang, Z.T.; He, S.Z. Effect of Eichhornia crassipes plantation on water quality in the Dianchi Lake. Ecol. Sci. 2013, 32, 110–114. [Google Scholar]
- Sheng, J.; Zheng, J.C.; Chen, L.G.; Zhu, P.P.; Zhou, W. Study on planting and harvest conditions of Eichhornia crassipes for eutrophic water remediation. J. Plant Resour. Environ. 2011, 20, 73–78. [Google Scholar] [CrossRef]
- Li, J.L.; Luo, C.L.; Li, H.; Xu, J.F.; Luo, L.C.; Pan, M.; He, F.; Man, X.M.; Zhang, R.F.; Gong, F.L.; et al. Spatio-temporal variation and driving factors of algal bloom at Lake Dianchi during 2002–2018. Acta Ecol. Sin. 2023, 43, 878–891. [Google Scholar]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-satellite-based analysis of long-term temporal-spatial dynamics and drivers of algal blooms in a plateau lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef]
- National Monthly Report on Surface Water Quality. Available online: https://www.mee.gov.cn/hjzl/shj/dbsszyb/ (accessed on 17 April 2023).
- SENTINEL-2 MISSION GUIDE. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 17 April 2023).
- Level 2A Algorithms and Products. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-algorithms-products (accessed on 17 April 2023).
- McFeeters, S.K. The use of ormalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Li, J.L.; Sheng, Y.W.; Luo, J.C.; Shen, Z.F. Remotely sensed mapping of inland lake area changes in the Tibetan Plateau. J. Lake Sci. 2011, 23, 311–320. [Google Scholar]
- Li, J.L.; Sheng, Y.W.; Luo, J.C. Automatic extraction of Himalayan glacial lakes with remote sensing. J. Remote Sens. 2011, 15, 29–43. [Google Scholar]
- Shen, J.X.; Yang, L.; Chen, X.; Li, J.L.; Peng, Q.Q.; Hu, J. A Method for Object-oriented Automatic Extraction of Lakes in the Mountain Area from Remote Sensing Image. Remote Sens. Land Resour. 2012, 24, 84–91. [Google Scholar]
- Xie, G.Q.; Li, M.; Lu, W.K.; Zhou, W.M.; Yu, L.X.; Li, F.R.; Yang, S.P. Spectral features, remote sensing identification and breaking-out meteorological condi-tions of algal bloom in Lake Dianchi. J. Lake Sci. 2010, 22, 327–336. [Google Scholar]
- Zhang, Y.Y.; Zhang, Z.Y.; Wang, Y.L.; Liu, H.Q.; Wang, Z.; Yan, S.H.; Han, Y.P.; Yang, L. Research on the Growth Characteristics and Accumulation Ability to N and P of Eichhornia crassipes in Different Water Areas of Dianchi Lake. J. Ecol. Rural. Environ. 2011, 27, 73–77. [Google Scholar]
- Zhang, Z.Y.; Zhang, Y.Y.; Liu, H.Q.; Li, X.M.; Yu, L.X. Population propagation characteristics and water improving effect of large-scale cultivated water hyacinth (Eichhornia crassipes) in Dianchi Lake Jiangsu. J. Agric. Sci. 2014, 30, 310–318. [Google Scholar]
- Zhou, Q.; Han, S.Q.; Yan, S.H.; Song, W.; Huang, J.P. The mutual effect between phytoplankton and water hyacinth planted on large scale in the eutrophic lake. Acta Hydrobiol. Sin. 2012, 36, 783–791. [Google Scholar]
- Brendonck, L.; Maes, J.; Rommens, W.; Dekeza, N.; Nhiwatiwa, T.; Barson, M.; Callebaut, V.; Phiri, C.; Moreau, K.; Gratwicke, B.; et al. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic sub-tropical impoundment (Lake Chivero, Zimbabwe). II. Spe-cies diversity. Archiv. Fur. Hydrobiol. 2003, 158, 389–405. [Google Scholar] [CrossRef]
- Pu, J. Identification of Algal Bloom and Aquatic Vegetation in China Based on Multi-Source Remote Sensing Images. Master’s Thesis, Changchun Normal University, Changchun, China, 2022. [Google Scholar] [CrossRef]
Year/Periods | Imaging Time (Month/Day) |
---|---|
2017 (10) | 0120, 0219, 0311, 1108, 1111, 1128, 1203, 1221, 1223, 1228 |
2018 (37) | 0105, 0120, 0125, 0130, 0209, 0216, 0224, 0301, 0303, 0313, 0318, 0321, 0402, 0412, 0422, 0517, 0522, 0601, 0606, 0716, 0825, 0902, 0909, 1007, 1103, 1116, 1118, 1121, 1123, 1126, 1128, 1203, 1211, 1213, 1221, 1223, 1226 |
2019 (50) | 0107, 0117, 0120, 0125, 0127, 0201, 0204, 0206, 0209, 0214, 0216, 0221, 0226, 0303, 0308, 0313, 0316, 0318, 0321, 0326, 0402, 0407, 0412, 0417, 0422, 0427, 0507, 0512, 0517, 0522, 0527, 0815, 0825, 0914, 1007, 1019, 1029, 1101, 1106, 1116, 1121, 1123, 1128, 1208, 1213, 1216, 1221, 1223, 1226, 1231, 0112 |
2020 (34) | 0115, 0117, 0120, 0122, 0127, 0204, 0206, 0214, 0221, 0224, 0302, 0307, 0312, 0327, 0401, 0411, 0416, 0421, 0506, 0516, 0625, 0730, 1013, 1110, 1115, 1117, 1120, 1122, 1125, 1127, 1212, 1225, 1227 |
NDVI | −0.1 > NDVI (C21) | −0.1–0.2 (C22) | −0.2–0.4 (C23) | −0.2 < NDVI (C24) |
---|---|---|---|---|
Degree of algal bloom | No | Mild | Moderate | Severe |
The algal bloom coverage within each pixel | <0 | 0–30% | 31–80% | 8l–100% |
EcRatio | EcNDVI | wNDVI | |||
---|---|---|---|---|---|
Time Period | R2 | Time Period | R2 | Time Period | R2 |
20171108–20180422 | 0.93 | 20171111–20180120 | 0.96 | 20171223–20180422 | 0.77 |
20180422–20181007 | 0.76 | 20180120–20181116 | 0.83 | 20180422–20190216 | 0.71 |
20181007–20190422 | 0.76 | 20181116–20190422 | 0.78 | 20190216–20190527 | 0.68 |
20190422–20190825 | 0.84 | 20190527–20200117 | 0.39 | ||
20190825–20200117 | 0.85 | 20200117–20200625 | 0.9 | ||
20200117–20200625 | 0.88 | 20200625–20201227 | 0.45 | ||
20200625–20201227 | 0.47 |
Year | Date | EcRatio | wNDVI | C21Ratio | C22Ratio | C23Ratio | C24Ratio |
---|---|---|---|---|---|---|---|
2018 | 0120 | 34.94 | −0.09 | 45.89 | 54.11 | 0 | 0 |
0125 | 32.65 | −0.12 | 57.98 | 42.02 | 0 | 0 | |
0130 | 32.19 | −0.1 | 56.11 | 43.89 | 0 | 0 | |
0224 | 15.83 | −0.09 | 50.04 | 49.96 | 0 | 0 | |
0303 | 15.23 | −0.03 | 2.13 | 97.87 | 0 | 0 | |
0313 | 14.15 | −0.03 | 0.1 | 99.9 | 0 | 0 | |
0402 | 10.94 | 0.03 | 0 | 100 | 0 | 0 | |
0412 | 3.94 | 0.05 | 0.06 | 97.2 | 2.74 | 0 | |
0422 | 3.91 | 0.09 | 1.02 | 92.22 | 6.76 | 0 | |
0517 | 4.78 | 0.06 | 0.08 | 95.58 | 4.35 | 0 | |
1116 | 50.51 | −0.1 | 55.98 | 38.41 | 5.6 | 0 | |
1121 | 53 | −0.07 | 49.12 | 47.09 | 3.79 | 0 | |
1123 | 58.66 | −0.04 | 38.85 | 55.75 | 5.4 | 0 | |
1128 | 64.98 | −0.07 | 49.21 | 44.88 | 5.91 | 0 | |
1213 | 59.38 | −0.1 | 58.3 | 36.93 | 4.77 | 0 | |
1226 | 51.69 | −0.17 | 75.97 | 21.31 | 2.72 | 0 | |
2019 | 0120 | 63.01 | −0.21 | 80.98 | 14.99 | 4.03 | 0 |
0125 | 56.15 | −0.16 | 81.53 | 15.21 | 3.26 | 0 | |
0127 | 50.37 | −0.26 | 87.3 | 10.07 | 2.63 | 0 | |
0226 | 33.8 | −0.33 | 90.15 | 7.43 | 2.41 | 0 | |
0303 | 35.48 | −0.29 | 88.1 | 9.32 | 2.58 | 0 | |
0313 | 25.43 | −0.15 | 82.03 | 16.33 | 1.64 | 0 | |
0402 | 14.88 | −0.07 | 37.2 | 60.65 | 2.15 | 0 | |
0412 | 11.54 | −0.08 | 50.86 | 46.84 | 2.3 | 0 | |
0422 | 1.7 | −0.08 | 38.91 | 59.51 | 1.58 | 0 | |
0517 | 5.51 | −0.03 | 5.57 | 90.85 | 3.59 | 0 | |
1116 | 2.05 | −0.07 | 14.27 | 85.73 | 0 | 0 | |
1121 | 1.68 | −0.08 | 26.72 | 73.28 | 0 | 0 | |
1123 | 0.87 | −0.05 | 10.38 | 88.37 | 1.25 | 0 | |
1128 | 0.28 | −0.1 | 61.4 | 37.14 | 1.07 | 0.39 | |
1213 | 2.26 | −0.16 | 85.46 | 14.39 | 0 | 0.15 | |
1226 | 1.63 | 0 | 11.16 | 87.05 | 1.79 | 0 | |
2020 | 0120 | 2.66 | −0.38 | 100 | 0 | 0 | 0 |
0122 | 2.66 | −0.4 | 100 | 0 | 0 | 0 | |
0127 | 1.15 | −0.27 | 91.49 | 8.01 | 0.51 | 0 | |
0224 | 1.5 | −0.06 | 11.2 | 88.8 | 0 | 0 | |
0302 | 2.46 | −0.16 | 90.45 | 9.55 | 0 | 0 | |
0312 | 1.83 | −0.08 | 44.02 | 55.43 | 0.55 | 0 | |
0401 | 2.57 | −0.04 | 45.65 | 42.46 | 2.67 | 9.22 | |
0411 | 1.51 | 0.04 | 4.98 | 84.89 | 9.12 | 1.01 | |
0421 | 1.33 | 0.13 | 0.03 | 83.96 | 14.38 | 1.63 | |
0516 | 2.88 | 0.19 | 2.48 | 50.15 | 31.18 | 16.18 | |
1115 | 1.54 | −0.2 | 80.73 | 17.72 | 1.55 | 0 | |
1120 | 1.41 | −0.17 | 90.29 | 8.32 | 1.39 | 0 | |
1122 | 1.13 | −0.18 | 89.78 | 8.91 | 1.31 | 0 | |
1127 | 1.17 | −0.26 | 95.37 | 3.53 | 1.11 | 0 | |
1212 | 2.05 | −0.3 | 97.74 | 2.26 | 0 | 0 | |
1225 | 1.63 | −0.31 | 97.91 | 2.09 | 0 | 0 |
Date | EcRatio | wNDVI | EcNDVI | C21Ratio | C22Ratio | C23Ratio | C24Ratio |
---|---|---|---|---|---|---|---|
20180105 | 40.87 | −0.18 | 0.44 | 65.72 | 34.28 | 0 | 0 |
20190107 | 51.58 | −0.4 | 0.78 | 91.34 | 6.32 | 2.33 | 0 |
20170120 | 31.4 | −0.05 | 0.54 | 40.7 | 58.35 | 0.95 | 0 |
20180120 | 34.94 | −0.09 | 0.42 | 45.89 | 54.11 | 0 | 0 |
20180216 | 33.78 | −0.12 | 0.47 | 69.74 | 30.26 | 0 | 0 |
20190216 | 37.74 | −0.52 | 0.65 | 92.79 | 4.96 | 2.25 | 0 |
20170219 | 16.3 | −0.06 | 0.53 | 7.5 | 92.5 | 0 | 0 |
20180224 | 15.83 | −0.09 | 0.47 | 50.04 | 49.96 | 0 | 0 |
20180321 | 12.54 | −0.04 | 0.5 | 0 | 100 | 0 | 0 |
20190321 | 18.48 | −0.04 | 0.65 | 0.53 | 97.82 | 1.65 | 0 |
20170311 | 11.81 | −0.02 | 0.57 | 0.49 | 98.56 | 0.95 | 0 |
20180313 | 14.15 | −0.03 | 0.5 | 0.1 | 99.9 | 0 | 0 |
20180402 | 10.94 | 0.03 | 0.46 | 0 | 100 | 0 | 0 |
20190402 | 14.88 | −0.07 | 0.67 | 37.2 | 60.65 | 2.15 | 0 |
20171128 | 60.77 | −0.1 | 0.83 | 57.65 | 26.32 | 8.41 | 7.62 |
20181128 | 64.98 | −0.07 | 0.83 | 49.21 | 44.88 | 5.91 | 0 |
20171203 | 64.35 | −0.08 | 0.74 | 44.47 | 55.53 | 0 | 0 |
20181211 | 66.45 | −0.2 | 0.85 | 75.57 | 18.11 | 6.31 | 0 |
20171223 | 61.13 | −0.25 | 0.57 | 81.31 | 18.69 | 0 | 0 |
20171221 | 66.58 | −0.19 | 0.66 | 74.09 | 25.91 | 0 | 0 |
20181223 | 68.25 | −0.21 | 0.83 | 70.32 | 22.48 | 7.2 | 0 |
20171228 | 52.02 | −0.06 | 0.45 | 37.4 | 62.6 | 0 | 0 |
20181226 | 51.69 | −0.17 | 0.81 | 75.97 | 21.31 | 2.72 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; He, P.; Sun, X.; Shen, Z.; Xu, R. Impact Eichhornia crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal Sentinel-2 Images. Remote Sens. 2023, 15, 2260. https://doi.org/10.3390/rs15092260
Shen J, He P, Sun X, Shen Z, Xu R. Impact Eichhornia crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal Sentinel-2 Images. Remote Sensing. 2023; 15(9):2260. https://doi.org/10.3390/rs15092260
Chicago/Turabian StyleShen, Jinxiang, Ping He, Xiaoli Sun, Zhanfeng Shen, and Rong Xu. 2023. "Impact Eichhornia crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal Sentinel-2 Images" Remote Sensing 15, no. 9: 2260. https://doi.org/10.3390/rs15092260
APA StyleShen, J., He, P., Sun, X., Shen, Z., & Xu, R. (2023). Impact Eichhornia crassipes Cultivation on Water Quality in the Caohai Region of Dianchi Lake Using Multi-Temporal Sentinel-2 Images. Remote Sensing, 15(9), 2260. https://doi.org/10.3390/rs15092260