NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers
Abstract
:1. Introduction
- To obtain the spatial and temporal distribution characteristics of land degradation and restoration in Balochistan province based on multiple regression analysis.
- To determine the major climate factors in Balochistan using Geodetector.
- Quantifying the impact of the anthropogenic factors on NDVI in Balochistan.
- To explore the sustainability of future vegetation trends in Balochistan.
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Computational Methods
2.3.1. Sen+ Mann–Kendall (MK) Analysis of Trends
2.3.2. Multiple Stepwise Regression Method
2.3.3. Geodetector
2.3.4. Hurst Index Analysis
- (1)
- Deviation
- (2)
- Range
- (3)
- Standard deviation
2.3.5. Residual Analysis
3. Results
3.1. Spatio-Temporal Characteristics of Land Degradation and Restoration in Balochistan
3.2. Correlation Analysis of NDVI and Climatic Drivers
3.2.1. Impact of Climatic Factors on NDVI
3.2.2. Analysis of the Influence of Human Factors on NDVI
4. Discussion
5. Conclusions
- In terms of restoration and degradation, land restoration in Balochistan is mainly influenced by climate and combined anthropogenic and climate factors, with shares of 36.26 and 3.34%, respectively, while land degradation is mainly influenced by climate and anthropogenic factors, with shares of 0.76 and 0.08%, respectively.
- TMP, AET, PET and MAP are the dominant climatic factors affecting the spatial distribution of the NDVI; TMP with MAP and TMP with AET are the main interactive factors affecting the spatial distribution of the NDVI.
- The trend of the anthropogenic impact on the NDVI has obvious spatial heterogeneity, which generally shows the characteristics of intermediate local inhibition and peripheral promotion. In Balochistan, 91.02% of the area showed a positive influence of human activities on the NDVI, while about 8.98% of the area showed a negative influence.
- The continuity study shows that 31.70% of the areas in Balochistan persistently improved, while 1.33% persistently degraded; 12.64% of the areas will change from improvement to degradation, while 0.48% will change from degradation to improvement. Persistent degradation and anti-persistent degradation appear to be patchy and scattered, while persistent improvement and anti-persistent improvement appear to be concentrated and contiguous. Balochistan is in an arid zone comprising mostly desert vegetation; hence, future changes in vegetation cover and land degradation are still a concern.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCammon, A.L. United nations conference on environment and development, held in Rio de Janeiro, Brazil, during 3–14 June 1992, and the’92 Global Forum, Rio de Janeiro, Brazil, 1–14 June 1992. Environ. Conserv. 1992, 19, 372–373. [Google Scholar] [CrossRef]
- Sims, N.; Green, C.; Newnham, G.; England, J.; Held, A.; Wulder, M.; Herold, M.; Cox, S.; Huete, A.; Kumar, L. Good practice guidance. SDG Indic. 2021, 15, 115. [Google Scholar]
- Nkonya, E.; Mirzabaev, A.; Von Braun, J. Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Springer Nature: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Alexander, S. Good Practice Guidance-SDG Indicator 15.3.1; United Nations Convention to Combat Desertification: Bonn, Germany; New York, NY, USA, 2017. [Google Scholar]
- Li, A.; Wu, J.; Huang, J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Li, B.; Yu, W.; Wang, J. An analysis of vegetation change trends and their causes in Inner Mongolia, China from 1982 to 2006. Adv. Meteorol. 2011, 2011, 367854. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Chang, Q.; Zhang, J.; Jiao, W.; Yao, F. A comparative analysis of the NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere. Geocarto Int. 2018, 33, 1–20. [Google Scholar] [CrossRef]
- Xiaona, G.; Ruishan, C.; Qiang, L. Processes, mechanisms, and impacts of land degradation in the IPBES Thematic Assessment. Acta Ecol. Sin. 2019, 39, 6567–6575. [Google Scholar]
- Huang, S.; Kong, J. Assessing land degradation dynamics and distinguishing human-induced changes from climate factors in the Three-North Shelter forest region of China. ISPRS Int. J. Geo-Inf. 2016, 5, 158. [Google Scholar] [CrossRef]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H. Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003. Acta Geogr. Sin. 2009, 64, 84–94. [Google Scholar]
- Meng, D.; Li, X.; Gong, H.; Qu, Y. Analysis of spatial-temporal change of NDVI and its climatic driving factors in Beijing-Tianjin-Hebei metropolis circle from 2001 to 2013. J. Geo-Inf. Sci. 2015, 17, 1001–1007. [Google Scholar]
- Yi, Y.; Wang, B.; Shi, M.; Meng, Z.; Zhang, C. Variation in vegetation and its driving force in the middle reaches of the Yangtze River in China. Water 2021, 13, 2036. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing vegetation response to climatic variations and human activities: Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- He, C.; Tian, J.; Gao, B.; Zhao, Y. Differentiating climate-and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 2015, 187, 4199. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Liu, W.; Lin, W.; Song, X. NDVI variation and its responses to climate change on the northern Loess Plateau of China from 1998 to 2012. Adv. Meteorol. 2015, 2015, 725427. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Y.; Zhu, X.; Li, S. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geogr. Sin. 2015, 70, 705–716. [Google Scholar]
- Wang, J.; Zhao, J.; Li, C.; Zhu, Y.; Kang, C.; Gao, C. The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015. Acta Geogr. Sin. 2019, 74, 504–519. [Google Scholar]
- Jin, K.; Wang, F.; Han, J.; Shi, S.; Ding, W. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982–2015. Acta Geogr. Sin. 2020, 75, 961–974. [Google Scholar]
- Higginbottom, T.P.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frameworks and future directions. Remote Sens. 2014, 6, 9552–9575. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid. Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Vu, Q.M.; Le, Q.B.; Vlek, P.L. Hotspots of human-induced biomass productivity decline and their social–ecological types toward supporting national policy and local studies on combating land degradation. Glob. Planet. Change 2014, 121, 64–77. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Khetran, M.S.B.; Saeed, M.A. The CPEC and China-Pakistan relations: A case study on Balochistan. China Q. Int. Strateg. Stud. 2017, 3, 447–461. [Google Scholar] [CrossRef]
- Shafiq, M.; Kakar, M. Effects of drought on livestock sector in Balochistan Province of Pakistan. Int. J. Agric. Biol. 2007, 9, 657–665. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. 1948. Available online: https://psycnet.apa.org/record/1948-15040-000 (accessed on 5 March 2023).
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Del Barrio, G.; Puigdefabregas, J.; Sanjuan, M.E.; Stellmes, M.; Ruiz, A. Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens. Environ. 2010, 114, 1817–1832. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Feng, J.; Rao, R.; He, T.; Chen, Y. Spatial-temporal changes of NDVI in yellow river basin and its dual response to climate change and human activities. Bull. Soil Water Conserv. 2021, 41, 1–11. [Google Scholar]
- Chandrasekaran, S.; Poomalai, S.; Saminathan, B.; Suthanthiravel, S.; Sundaram, K.; Abdul Hakkim, F.F. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series. Meteorol. Appl. 2019, 26, 511–519. [Google Scholar] [CrossRef]
- Balkissoon, S.; Fox, N.; Lupo, A. Fractal characteristics of tall tower wind speeds in Missouri. Renew. Energy 2020, 154, 1346–1356. [Google Scholar] [CrossRef]
- Salomao, L.; Campanha, J.; Gupta, H. Rescaled range analysis of pluviometric records in Sao Paulo State, Brazil. Theor. Appl. Climatol. 2009, 95, 83–89. [Google Scholar] [CrossRef]
- Geerken, R.; Ilaiwi, M. Assessment of rangeland degradation and development of a strategy for rehabilitation. Remote Sens. Environ. 2004, 90, 490–504. [Google Scholar] [CrossRef]
- Yuan, L.; Jiang, W.; Shen, W.; Liu, Y.; Wang, W.; Tao, L.; Zheng, H.; Liu, X. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecol. Sin. 2013, 33, 7798–7806. [Google Scholar]
- Zeng, D.; Wu, J.; Mu, Y.; Deng, M.; Wei, Y.; Sun, W. Spatial-temporal pattern changes of UTCI in the China-Pakistan economic corridor in recent 40 years. Atmosphere 2020, 11, 858. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Gao, J.; Jiao, K.; Wu, S. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982–2013. Acta Geogr. Sin. 2019, 74, 534–543. [Google Scholar]
- Ashraf, M.; Routray, J.K. Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Nat. Hazards 2015, 77, 229–254. [Google Scholar] [CrossRef]
- Bashir, B.; Cao, C.; Naeem, S.; Zamani Joharestani, M.; Bo, X.; Afzal, H.; Jamal, K.; Mumtaz, F. Spatio-temporal vegetation dynamic and persistence under climatic and anthropogenic factors. Remote Sens. 2020, 12, 2612. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Mupenzi, C.; Li, H.; Ma, J.; Li, Z. Quantitative contributions of climate change and human activities to vegetation changes in the Upper White Nile River. Remote Sens. 2021, 13, 3648. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, Q.; Lu, A. Spatiotemporal variation in vegetation coverage and its driving factors in the Guanzhong Basin, NW China. Ecol. Inform. 2021, 64, 101371. [Google Scholar] [CrossRef]
Data | Data Source | Spatial Resolution | Time Period |
---|---|---|---|
NDVI | MODIS (MOD13A1) | 500 m | 2000–2020 |
SRAD | TerraClimate | 4638.3 m | 2000–2020 |
PET | TerraClimate | 4638.3 m | 2000–2020 |
AET | TerraClimate | 4638.3 m | 2000–2020 |
TMP | TerraClimate | 4638.3 m | 2000–2020 |
MAP | TerraClimate | 4638.3 m | 2000–2020 |
Slope | Trend of Factor | Percentage (%) |
---|---|---|
<−0.0005 | CDD | 0.76 |
<−0.0005 | BDD | 0.02 |
<−0.0005 | HDD | 0.08 |
≥0.0005 | CDR | 36.26 |
≥0.0005 | BDR | 3.34 |
≥0.0005 | HDR | 1.56 |
−0.0005–0.0005 | Stable | 44.19 |
No impact | 13.79 |
Year | AET | MAP | PET | SRAD | TMP |
---|---|---|---|---|---|
2000 | 0.139 | 0.140 | 0.145 | 0.056 | 0.227 |
2001 | 0.152 | 0.156 | 0.156 | 0.041 | 0.204 |
2002 | 0.112 | 0.101 | 0.150 | 0.069 | 0.199 |
2003 | 0.255 | 0.227 | 0.184 | 0.060 | 0.226 |
2004 | 0.111 | 0.099 | 0.115 | 0.052 | 0.196 |
2005 | 0.126 | 0.184 | 0.184 | 0.137 | 0.230 |
2006 | 0.142 | 0.140 | 0.159 | 0.219 | 0.220 |
2007 | 0.182 | 0.170 | 0.172 | 0.130 | 0.165 |
2008 | 0.206 | 0.213 | 0.145 | 0.080 | 0.207 |
2009 | 0.148 | 0.154 | 0.197 | 0.049 | 0.223 |
2010 | 0.389 | 0.378 | 0.188 | 0.240 | 0.206 |
2011 | 0.224 | 0.177 | 0.210 | 0.196 | 0.191 |
2012 | 0.145 | 0.146 | 0.223 | 0.090 | 0.202 |
2013 | 0.207 | 0.176 | 0.195 | 0.188 | 0.208 |
2014 | 0.148 | 0.148 | 0.202 | 0.121 | 0.219 |
2015 | 0.257 | 0.238 | 0.208 | 0.126 | 0.207 |
2016 | 0.260 | 0.244 | 0.208 | 0.177 | 0.224 |
2017 | 0.189 | 0.184 | 0.210 | 0.065 | 0.225 |
2018 | 0.175 | 0.173 | 0.153 | 0.078 | 0.165 |
2019 | 0.109 | 0.117 | 0.214 | 0.106 | 0.195 |
2020 | 0.241 | 0.214 | 0.262 | 0.102 | 0.223 |
Average | 0.210 | 0.203 | 0.208 | 0.086 | 0.237 |
Impact | Effect | Slope | Area Proportion (%) | Average |
---|---|---|---|---|
Positive | Severe | >0.0120 | 0.0010 | 0.0130 |
Heavy | 0.0070 to 0.0120 | 0.0640 | 0.0082 | |
Medium | 0.0040 to 0.0070 | 0.4175 | 0.0050 | |
Less | 0 to 0.0040 | 90.5416 | 0.0005 | |
Negative | Less | −0.0020 to 0.0040 | 8.7764 | −0.0003 |
Medium | −0.0040 to −0.0020 | 0.1488 | −0.0027 | |
Heavy | −0.0160 to 0.0040 | 0.0506 | −0.0059 | |
Severe | <−0.0160 | 0.0001 | −0.0192 |
Impact Level | Effect | Area Proportion (%) | Average |
---|---|---|---|
H < 0.25 | Strong | 0.07 | 0.23 |
0.25 ≤ H < 0.35 | Stronger | 1.67 | 0.32 |
0.35 ≤ H < 0.45 | Weaker | 12.09 | 0.41 |
0.45 ≤ H < 0.50 | Weak | 13.30 | 0.48 |
0.50 ≤ H < 0.55 | Weak | 17.00 | 0.53 |
0.55 ≤ H < 0.65 | Weaker | 32.72 | 0.60 |
0.65 ≤ H < 0.75 | Stronger | 18.65 | 0.69 |
H > 0.75 | Strong | 4.51 | 0.78 |
Slope | Effect | Area Proportion (%) | Average |
---|---|---|---|
≤−0.0005 | >0.5 | PD | 1.33 |
≤−0.0005 | <0.5 | APD | 0.48 |
−0.0005–0.0005 | >0.5 or <0.5 | Stable | 53.85 |
≥0.0005 | <0.5 | API | 12.64 |
≥0.0005 | >0.5 | PI | 31.70 |
District | PD | APD | Stable | API | PI |
---|---|---|---|---|---|
Zhob | 0.41% | 0.17% | 11.06% | 33.27% | 55.08% |
Sibi | 0.26% | 0.10% | 11.30% | 9.19% | 79.16% |
Quetta | 0.61% | 0.42% | 73.57% | 16.04% | 9.36% |
Nasirabad | 5.62% | 2.95% | 24.50% | 21.82% | 45.11% |
Kalat | 1.55% | 0.40% | 63.35% | 6.56% | 28.14% |
Makran | 1.56% | 0.38% | 75.40% | 4.47% | 18.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, Y.; Chen, Y.; Fu, S.; Zhou, N. NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sens. 2023, 15, 2388. https://doi.org/10.3390/rs15092388
Chen X, Wang Y, Chen Y, Fu S, Zhou N. NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sensing. 2023; 15(9):2388. https://doi.org/10.3390/rs15092388
Chicago/Turabian StyleChen, Xiaoxin, Yongdong Wang, Yusen Chen, Shilin Fu, and Na Zhou. 2023. "NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers" Remote Sensing 15, no. 9: 2388. https://doi.org/10.3390/rs15092388
APA StyleChen, X., Wang, Y., Chen, Y., Fu, S., & Zhou, N. (2023). NDVI-Based Assessment of Land Degradation Trends in Balochistan, Pakistan, and Analysis of the Drivers. Remote Sensing, 15(9), 2388. https://doi.org/10.3390/rs15092388