Topological Generality and Spectral Dimensionality in the Earth Mineral Dust Source Investigation (EMIT) Using Joint Characterization and the Spectral Mixture Residual
Abstract
:1. Introduction
- To what extent are EMIT reflectance spectra well characterized by a generalized three-endmember Substrate, Vegetation, Dark (SVD) model, such as has been shown effective for analysis of multispectral satellite imagery?
- What quantitative and qualitative differences in spectral dimensionality and feature space topology are observed between EMIT reflectance and simulated multispectral data?
- Does the spectral mixture model residual from EMIT data contain substantially more information than the mixture residual computed from multispectral data? If so, is this effectively captured by traditional dimensionality metrics like variance partition? And is this information also manifest topologically in the spectral feature space as a substantially different manifold structure?
- To what extent can joint characterization be used to reveal subtle but physically meaningful spectral signals in EMIT data? Are these signals spatially coherent?
2. Materials and Methods
2.1. Data
2.2. Joint Characterization
- Characterize spectral feature space on the basis of (statistically) global variance.
- a.
- Evaluate spectral mixture model and compute mixture residual.
- Characterize spectral feature space on the basis of (statistically) local connectivity.
- Evaluate the topology of global and local feature spaces separately.
- Characterize joint feature space formed by both global and local basis vectors.
2.2.1. Global Variance Characterization with PCA
Evaluation of Linear Spectral Mixture Model, Including Residual
2.2.2. Local Variance Characterization with UMAP
Each pixel reflectance vector occupies a position in high-dimensional feature space. Position in this feature space is a function of the generative physical processes underlying the spectral signature, plus measurement noise. Generative physical processes may be linear (single-scatter geometric optics) or nonlinear (intimate mixing); and span a broad range of amplitudes. The full set of generative physical processes of a large number of spectra describes a curvilinear manifold in high-dimensional feature space. Manifold learning algorithms seek to estimate this underlying manifold and use its structure to uncover useful information about the data.
2.2.3. Evaluate the Topology of Global and Local Feature Spaces Separately
2.2.4. Characterize Joint Feature Space
3. Results
3.1. Variance-Based Spectral Feature Space—PCA
3.2. Manifold-Based Feature Space—UMAP
3.3. Joint Characterization
3.4. Single-Scene Examples
4. Discussion
4.1. Generality of the SVD Model
4.2. Feature Space Dimensionality and Topology: Hyperspectral vs. Multispectral
4.3. Mixture Residual Efficacy: Hyperspectral vs. Multispectral
4.4. Efficacy of Joint Characterization with EMIT Data
4.5. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Title | Short Name | Latitude | Longitude |
---|---|---|---|
EMIT_L2A_RFL_001_20220909T145335_2225209_006 | Horqueta | −41.53 | −68.60 |
EMIT_L2A_RFL_001_20220903T163129_2224611_012 | Bahia Union | −39.24 | −62.09 |
EMIT_L2A_RFL_001_20220903T101734_2224607_026 | Eastern Cape | −33.01 | 23.50 |
EMIT_L2A_RFL_001_20220830T065605_2224205_022 | Tuwaiq | 24.74 | 46.30 |
EMIT_L2A_RFL_001_20220828T174405_2224012_007 | Los Angeles | 34.99 | −118.51 |
EMIT_L2A_RFL_001_20220817T140711_2222909_021 | Murzuq | 26.30 | 12.39 |
EMIT_L2A_RFL_001_20220815T042838_2222703_003 | Caspian | 40.12 | 54.22 |
EMIT_L2A_RFL_001_20220815T025827_2222702_016 | Gurbantunggut | 45.68 | 88.96 |
EMIT_L2A_RFL_001_20220814T223520_2222615_004 | Black Rock | 41.36 | −119.54 |
EMIT_L2A_RFL_001_20220814T160517_2222611_005 | Sierra Nevada | 38.45 | −119.69 |
EMIT_L2A_RFL_001_20220909T131308_2225208_011 | Atacama | −21.95 | −69.18 |
EMIT_L2A_RFL_001_20220905T083937_2224806_033 | Bushveld | −24.46 | 26.61 |
EMIT_L2A_RFL_001_20220827T043253_2223903_002 | Tian Shan | 41.95 | 77.10 |
EMIT_L2A_RFL_001_20220814T160505_2222611_004 | San Joaquin | 37.97 | −120.41 |
EMIT_L2A_RFL_001_20220901T034405_2224403_006 | Hindu Kush | 36.73 | 68.68 |
EMIT_L2A_RFL_001_20220909T114035_2225207_003 | Mata Atlântica | −22.75 | −44.88 |
EMIT_L2A_RFL_001_20220909T070044_2225204_005 | Okavango | −18.83 | 22.51 |
EMIT_L2A_RFL_001_20220912T154138_2225510_002 | Patagonia | −49.58 | −74.14 |
EMIT_L2A_RFL_001_20220816T070436_2222805_008 | Gobi | 41.72 | 104.40 |
EMIT_L2A_RFL_001_20220901T052019_2224404_013 | Zagros | 27.70 | 55.64 |
References
- Green, R.O.; Thompson, D.R. EMIT Team NASA’s Earth Surface Mineral Dust Source Investigation: An Earth Venture Imaging Spectrometer Science Mission. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 119–122. [Google Scholar]
- Bradley, C.L.; Thingvold, E.; Moore, L.B.; Haag, J.M.; Raouf, N.A.; Mouroulis, P.; Green, R.O. Optical Design of the Earth Surface Mineral Dust Source Investigation (EMIT) Imaging Spectrometer. In Proceedings of the Imaging Spectrometry XXIV: Applications, Sensors, and Processing, Online, 24 August–4 September 2020; Volume 11504, p. 1150402. [Google Scholar]
- LP DAAC—New NASA Mission EMIT Launched to the International Space Station. Available online: https://lpdaac.usgs.gov/news/new-nasa-mission-emit-launched-to-the-international-space-station/ (accessed on 6 March 2023).
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N. Fifty Years of Landsat Science and Impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Pearlman, J.S.; Barry, P.S.; Segal, C.C.; Shepanski, J.; Beiso, D.; Carman, S.L. Hyperion, a Space-Based Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1160–1173. [Google Scholar] [CrossRef]
- Corson, M.R.; Korwan, D.R.; Lucke, R.L.; Snyder, W.A.; Davis, C.O. The Hyperspectral Imager for the Coastal Ocean (HICO) on the International Space Station. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; Volume 4, pp. IV–101–IV–104. [Google Scholar]
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and Radiometric Calibration of the Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef]
- Candela, L.; Formaro, R.; Guarini, R.; Loizzo, R.; Longo, F.; Varacalli, G. The PRISMA Mission. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 253–256. [Google Scholar]
- Krutz, D.; Müller, R.; Knodt, U.; Günther, B.; Walter, I.; Sebastian, I.; Säuberlich, T.; Reulke, R.; Carmona, E.; Eckardt, A.; et al. The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 1622. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Iwasaki, A.; Ohgi, N.; Tanii, J.; Kawashima, T.; Inada, H. Hyperspectral Imager Suite (HISUI)-Japanese Hyper-Multi Spectral Radiometer. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1025–1028. [Google Scholar]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission for the Environment (CHIME). In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 157–159. [Google Scholar]
- Thompson, D.R.; Schimel, D.S.; Poulter, B.; Brosnan, I.; Hook, S.J.; Green, R.O.; Glenn, N.; Guild, L.; Henn, C.; Cawse-Nicholson, K. NASA’s Surface Biology and Geology Concept Study: Status and Next Steps. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3269–3271. [Google Scholar]
- Thompson, D.R.; Natraj, V.; Green, R.O.; Helmlinger, M.C.; Gao, B.-C.; Eastwood, M.L. Optimal Estimation for Imaging Spectrometer Atmospheric Correction. Remote Sens. Environ. 2018, 216, 355–373. [Google Scholar] [CrossRef]
- Gao, B.-C.; Montes, M.J.; Ahmad, Z.; Davis, C.O. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space. Appl. Opt. 2000, 39, 887–896. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Joint Characterization of Multiscale Information in High Dimensional Data. arXiv 2021, arXiv:2102.09669. [Google Scholar] [CrossRef]
- Sousa, D.; Brodrick, P.G.; Cawse-Nicholson, K.; Fisher, J.B.; Pavlick, R.; Small, C.; Thompson, D.R. The Spectral Mixture Residual: A Source of Low-Variance Information to Enhance the Explainability and Accuracy of Surface Biology and Geology Retrievals. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006672. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Joint Characterization of Sentinel-2 Reflectance: Insights from Manifold Learning. Remote Sens. 2022, 14, 5688. [Google Scholar] [CrossRef]
- Small, C.; Sousa, D. The Sentinel 2 MSI Spectral Mixing Space. Remote Sens. 2022, 14, 5748. [Google Scholar] [CrossRef]
- Sousa, F.J.; Sousa, D.J. Hyperspectral Reconnaissance: Joint Characterization of the Spectral Mixture Residual Delineates Geologic Unit Boundaries in the White Mountains, CA. Remote Sens. 2022, 14, 4914. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Joint Characterization of Spatiotemporal Data Manifolds. Front. Remote Sens. 2022, 3, 760650. [Google Scholar] [CrossRef]
- Small, C.; Sousa, D. Joint Characterization of the Cryospheric Spectral Feature Space. Front. Remote Sens. 2021, 2, 55. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Strang, G. Introduction to Linear Algebra, 5th ed.; Wellesley-Cambridge Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2002; ISBN 1-139-42509-9. [Google Scholar]
- Menke, W.; Menke, J. Environmental Data Analysis with MatLab; Academic Press: Cambridge, MA, USA, 2016; ISBN 0-12-804550-7. [Google Scholar]
- Cawse-Nicholson, K.; Damelin, S.B.; Robin, A.; Sears, M. Determining the Intrinsic Dimension of a Hyperspectral Image Using Random Matrix Theory. IEEE Trans. Image Process. 2013, 22, 1301–1310. [Google Scholar] [CrossRef]
- Thompson, D.R.; Boardman, J.W.; Eastwood, M.L.; Green, R.O. A Large Airborne Survey of Earth’s Visible-Infrared Spectral Dimensionality. Opt. Express 2017, 25, 9186–9195. [Google Scholar] [CrossRef]
- Boardman, J.W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop, Washington, DC, USA, 25–29 October 1993; Volume 1, pp. 11–14. [Google Scholar]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in Deserts: I. A Regional Measure of Abundance from Multispectral Images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Gillespie, A.; Smith, M.; Adams, J.; Willis, S.; Fischer, A.; Sabol, D. Interpretation of Residual Images: Spectral Mixture Analysis of AVIRIS Images, Owens Valley, California. In Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Pasadena, CA, USA, 4–5 June 1990; NASA: Pasadena, CA, USA, 1990; pp. 243–270. [Google Scholar]
- Adams, J.B.; Smith, M.O.; Johnson, P.E. Spectral Mixture Modeling: A New Analysis of Rock and Soil Types at the Viking Lander 1 Site. J. Geophys. Res. Solid Earth 1986, 91, 8098–8112. [Google Scholar] [CrossRef]
- Small, C. The Landsat ETM+ Spectral Mixing Space. Remote Sens. Environ. 2004, 93, 1–17. [Google Scholar] [CrossRef]
- Settle, J.J.; Drake, N.A. Linear Mixing and the Estimation of Ground Cover Proportions. Int. J. Remote Sens. 1993, 14, 1159–1177. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319. [Google Scholar] [CrossRef] [PubMed]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323. [Google Scholar] [CrossRef]
- Donoho, D.L.; Grimes, C. Hessian Eigenmaps: Locally Linear Embedding Techniques for High-Dimensional Data. Proc. Natl. Acad. Sci. USA 2003, 100, 5591. [Google Scholar] [CrossRef]
- Belkin, M.; Niyogi, P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Comput. 2003, 15, 1373–1396. [Google Scholar] [CrossRef]
- Hinton, G.; Roweis, S.T. Stochastic Neighbor Embedding; Citeseer: Princeton, NJ, USA, 2002; Volume 15, pp. 833–840. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Van Der Maaten, L.; Postma, E.; Van den Herik, J. Dimensionality Reduction: A Comparative Review. J. Mach. Learn. Res. 2009, 10, 13. [Google Scholar]
- Landgrebe, D. Hyperspectral Image Data Analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Hérault, J.; Guérin-Dugué, A.; Villemain, P. Searching for the Embedded Manifolds in High-Dimensional Data, Problems and Unsolved Questions. In Proceedings of the ESANN 2002, Bruges, Belgium, 24–26 April 2002; pp. 173–184. [Google Scholar]
- Kim, D.H.; Finkel, L.H. Hyperspectral Image Processing Using Locally Linear Embedding. In Proceedings of the First International IEEE EMBS Conference on Neural Engineering, Capri, Italy, 20–22 March 2003; pp. 316–319. [Google Scholar]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A. Exploiting Manifold Geometry in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 441–454. [Google Scholar] [CrossRef]
- Gillis, D.; Bowles, J.; Lamela, G.M.; Rhea, W.J.; Bachmann, C.M.; Montes, M.; Ainsworth, T. Manifold Learning Techniques for the Analysis of Hyperspectral Ocean Data. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA, 28 March–1 April 2005; Volume 5806, pp. 342–351. [Google Scholar]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A. Improved Manifold Coordinate Representations of Hyperspectral Imagery; Naval Research Laboratory Remote Sensing Division: Washington, DC, USA, 2005. [Google Scholar]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A. Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2786–2803. [Google Scholar] [CrossRef]
- Ainsworth, T.L.; Bachmann, C.M.; Fusina, R.A. Local Intrinsic Dimensionality of Hyperspectral Imagery from Non-Linear Manifold Coordinates. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1541–1542. [Google Scholar]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A.; Montes, M.J.; Bowles, J.H.; Korwan, D.R. Bathymetric Retrieval from Manifold Coordinate Representations of Hyperspectral Imagery. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1548–1551. [Google Scholar]
- Mohan, A.; Sapiro, G.; Bosch, E. Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2007, 4, 206–210. [Google Scholar] [CrossRef]
- Bachmann, C.M.; Ainsworth, T.L.; Fusina, R.A. A Scalable Approach to Modeling Nonlinear Structure in Hyperspectral Imagery and Other High-Dimensional Data Using Manifold Coordinate Representations; SPIE: Bellingham, WA, USA, 2010; Volume 7695, pp. 92–98. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Sousa, D.; Small, C. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California. Sensors 2018, 18, 583. [Google Scholar] [CrossRef]
- Small, C.; Milesi, C. Multi-Scale Standardized Spectral Mixture Models. Remote Sens. Environ. 2013, 136, 442–454. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Global Cross-Calibration of Landsat Spectral Mixture Models. Remote Sens. Environ. 2017, 192, 139–149. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Globally Standardized MODIS Spectral Mixture Models. Remote Sens. Lett. 2019, 10, 1018–1027. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The Tasselled Cap–a Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 29 June–1 July 1976; p. 159. [Google Scholar]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 3, 256–263. [Google Scholar] [CrossRef]
- Small, C. Estimation of Urban Vegetation Abundance by Spectral Mixture Analysis. Int. J. Remote Sens. 2001, 22, 1305–1334. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Boardman, J.W.; Green, R.O. Exploring the Spectral Variability of the Earth as Measured by AVIRIS in 1999; Jet Propulsion Laboratory Special Publication: Pasadena, CA, USA, 2000. [Google Scholar]
- Asner, G.P.; Knapp, D.E.; Boardman, J.; Green, R.O.; Kennedy-Bowdoin, T.; Eastwood, M.; Martin, R.E.; Anderson, C.; Field, C.B. Carnegie Airborne Observatory-2: Increasing Science Data Dimensionality via High-Fidelity Multi-Sensor Fusion. Remote Sens. Environ. 2012, 124, 454–465. [Google Scholar] [CrossRef]
- Cawse-Nicholson, K.; Hook, S.J.; Miller, C.E.; Thompson, D.R. Intrinsic Dimensionality in Combined Visible to Thermal Infrared Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4977–4984. [Google Scholar] [CrossRef]
- Dai, J.; Vaughn, N.R.; Seeley, M.; Heckler, J.; Thompson, D.R.; Asner, G.P. Spectral Dimensionality of Imaging Spectroscopy Data over Diverse Landscapes and Spatial Resolutions. J. Appl. Remote Sens. 2022, 16, 044518. [Google Scholar] [CrossRef]
- Sousa, D.; Small, C. Which Vegetation Index? Benchmarking Multispectral Metrics to Hyperspectral Mixture Models in Diverse Cropland. Remote Sens. 2023, 15, 971. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. J. Geophys. Res. E Planets 2003, 108, 1–44. [Google Scholar] [CrossRef]
- Thompson, D.R.; Brodrick, P.G.; Green, R.O.; Kalashnikova, O.; Lundeen, S.; Okin, G.; Olson-Duvall, W.; Painter, T. EMIT L2A Algorithm: Surface Reflectance and Scene Content Masks—Theoretical Basis; Earth Mineral dust source InvesTigation (EMIT); Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2020; p. 23. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, D.; Small, C. Topological Generality and Spectral Dimensionality in the Earth Mineral Dust Source Investigation (EMIT) Using Joint Characterization and the Spectral Mixture Residual. Remote Sens. 2023, 15, 2295. https://doi.org/10.3390/rs15092295
Sousa D, Small C. Topological Generality and Spectral Dimensionality in the Earth Mineral Dust Source Investigation (EMIT) Using Joint Characterization and the Spectral Mixture Residual. Remote Sensing. 2023; 15(9):2295. https://doi.org/10.3390/rs15092295
Chicago/Turabian StyleSousa, Daniel, and Christopher Small. 2023. "Topological Generality and Spectral Dimensionality in the Earth Mineral Dust Source Investigation (EMIT) Using Joint Characterization and the Spectral Mixture Residual" Remote Sensing 15, no. 9: 2295. https://doi.org/10.3390/rs15092295
APA StyleSousa, D., & Small, C. (2023). Topological Generality and Spectral Dimensionality in the Earth Mineral Dust Source Investigation (EMIT) Using Joint Characterization and the Spectral Mixture Residual. Remote Sensing, 15(9), 2295. https://doi.org/10.3390/rs15092295