Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Data
2.2.1. In Situ Observations
2.2.2. Remotely Sensed SM Data
2.2.3. MODIS Data
2.2.4. Topographic Data
2.2.5. Landsat 8 OLI Data
2.3. Proposed Methodology
2.3.1. Selection of Predictors
2.3.2. DBN-Based Method
DBN Model
DBN-Based Downscaling Procedure
2.3.3. Evaluation Method
3. Results and Discussion
3.1. Evaluation of the SMD-DBN-Downscaled SM Data
3.1.1. Evaluation with Original SM and Field Measurement
3.1.2. Temporal Validation
3.2. Evaluation of SMD-DBN against SMD-RF
3.3. Transfer of SMD-DBN to AMSR-2
4. Conclusions
- (1)
- In terms of R, R2, and RMSE, the results obtained by the SMD-DBN model are in good agreement with the SMN-SDR field measurements, both spatially and temporally. The high spatial resolution SM map generated by this method has finer spatial information than the coarse resolution dataset and is highly consistent with the original SM data.
- (2)
- Compared with the widely used RF model, the proposed SMD-DBN model showed higher predictive performance when evaluated against SMN-SDR monitoring observations.
- (3)
- The downscaling method in this study can be applied to other coarse spatial scale remotely sensed SM dataset, such as AMSR-2. The SMD-DBN model has a good effect on the downscaling of SM product data, including SMAP and AMSR-2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Manag. 2017, 31, 3161–3176. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Agha Kouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452480. [Google Scholar]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef] [Green Version]
- Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Akbar, R.; Chan, S.; Chaubell, J.; Das, N.; Dunbar, R.S.; Entekhabi, D.; Gevaert, A.; et al. Comprehensive analysis of alternative downscaled soil moisture products. Remote Sens. Environ. 2020, 239, 1115856. [Google Scholar] [CrossRef]
- Zhao, W.; Wen, F.P.; Cai, J.F. Methods, progresses and challenges of passive microwave soil moisture spatial downscaling. Natl. Remote Sens. Bull. 2022, 26, 1699–1722. [Google Scholar] [CrossRef]
- Portal, G.; Vall-Llossera, M.; Piles, M.; Camps, A.; Chaparro, D.; Pablos, M.; Rossato, L. A spatially consistent downscaling approach for SMOS using an adaptive moving window. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1883–1894. [Google Scholar] [CrossRef]
- Zhao, W.; Nilda, S.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar] [CrossRef]
- Dandridge, C.; Fang, B.; Lakshmi, V. Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. Water 2019, 12, 56. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, W.; Wang, Q.; Xia, X. Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Adv. Water Resour. 2020, 141, 103601. [Google Scholar] [CrossRef]
- Hu, F.; Wei, Z.; Zhang, W.; Dorjee, D.; Meng, L. A spatial downscaling method for SMAP soil moisture through visible and shortwave-infrared remote sensing data. J. Hydrol. 2020, 590, 125360. [Google Scholar] [CrossRef]
- Wen, F.P.; Zhao, W.; Hu, L.; Xu, H.X.; Cui, Q. SMAP passive microwave soil moisture spatial downscaling based on optical remote sensing data: A case study in Shandian river basin. Natl. Remote Sens. Bull. 2021, 25, 962–973. [Google Scholar]
- Warner, D.L.; Guevara, M.; Callahan, J.; Vargas, R. Downscaling satellite soil moisture for landscape applications: A case study in Delaware, USA. J. Hydrol. Reg. Stud. 2021, 38, 100946. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, L.; Du, J.; Zhao, S.; Wang, G.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, K.S.; Bi, H.; Chen, Q. A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4929–4940. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sens. 2017, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.X.; Jia, L.; Chen, Q.T.; Yin, Y.M.; Massimo, M. Evaluation of microwave remote sensing soil moisture products in farming-pastoral area of Shandian river basin. Natl. Remote Sens. Bull. 2021, 25, 974–989. [Google Scholar]
- Wang, X.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, Q.; Su, J.; Zheng, J.; Gou, Q. Assessment of SMOS and SMAP soil moisture products against new estimates combining physical model, a statistical model, and in-situ observations: A case study over the Huai River Basin, China. J. Hydrol. 2021, 598, 126468. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, T.; Lü, H.; Shi, J.; Cosh, M.H.; Ji, D.; Jiang, L.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 soil moisture datasets using a new in situ network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, D.; Lin, Y.; Du, Y.; Zhang, Z.; Wang, D.; Lin, Z. Comparative evaluation and difference analysis of SMOS and SMAP satellite remote sensing soil moisture products. Acta Sci. Nat. Univ. Sunyatseni 2022, 61, 9–21. [Google Scholar]
- Liu, Y.; Yang, Y.; Jing, W.; Yue, X. Comparison of different machine learning approaches for monthly satellite-based soil moisture downscaling over Northeast China. Remote Sens. 2018, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A microwave-optical/IR synergistic approach. Int. J. Remote Sens. 2003, 24, 4599–4622. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef] [Green Version]
- Piles, M.; Camps, A.; Vall-llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3156–3166. [Google Scholar] [CrossRef]
- Piles, M.; Sanchez, N.; Vall-Llossera, M.; Camps, A.; Martínez-Fernández, J.; Martínez, J.; González-Gambau, V. A downscaling approach for SMOS Land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3845–3857. [Google Scholar] [CrossRef] [Green Version]
- Piles, M.; Petropoulos, G.P.; Sánchez, N.; González-Zamora, Á.; Ireland, G. Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sens. Environ. 2016, 180, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, A. A downscaling method for improving the spatial resolution of AMSR-E derived soil moisture product based on MSG-SEVIRI data. Remote Sens. 2013, 5, 6790–6811. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Barros, A.P. Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sens. Environ. 2002, 83, 400–413. [Google Scholar] [CrossRef]
- Merlin, O.; Walker, J.; Chehbouni, A.; Kerr, Y. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sens. Environ. 2008, 112, 3935–3946. [Google Scholar] [CrossRef] [Green Version]
- Ranney, K.J.; Niemann, J.D.; Lehman, B.M.; Green, T.R.; Jones, A.S. A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data. Adv. Water Resour. 2015, 76, 8196. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Escorihuela, M.J.; Mayoral, M.A.; Hagolle, O.; Al Bitar, A.; Kerr, Y. Self-calibrated evaporation-based disaggregation of SMOS soil moisture: An evaluation study at 3km and 100m resolution in Catalunya, Spain. Remote Sens. Environ. 2013, 130, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Molero, B.; Merlin, O.; Malbéteau, Y.; al Bitar, A.; Cabot, F.; Stefan, V.; Kerr, Y.; Bacon, S.; Cosh, M.H.; Bindlish, R.; et al. SMOS disaggregated soil moisture product at 1km resolution: Processor overview and first validation results. Remote Sens. Environ. 2016, 180, 361–376. [Google Scholar] [CrossRef]
- Toride, K.; Sawada, Y.; Aida, K.; Koike, T. Toward high-resolution soil moisture monitoring by combining active-passive microwave and optical vegetation remote sensing products with land surface model. Sensors 2019, 19, 3924. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Chehbouni, A.; Kerr, Y.H.; Goodrich, D.C. A downscaling method for distributing surface soil moisture within a microwave pixel: Application to the Monsoon ’90 data. Remote Sens. Environ. 2006, 101, 379–389. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, B.C.; Li, H.; Ruan, L. A primary study on downscaling microwave soil moisture with MOD 16 and SMAP. Natl. Remote Sens. Bull. 2021, 25, 776–790. [Google Scholar]
- Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M. Machine Learning in Geo- and Environmental Sciences: From Small to Large Scale. Adv. Water Resour. 2020, 142, 103619. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, K.; Lu, F. CLDAS soil moisture downscaling using MODIS products through machine learning in Daqinghe River Basin. Water Resour. Hydropower Eng. 2019, 50, 18–24. [Google Scholar]
- Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.-D. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea. GISci. Remote Sens. 2018, 56, 43–67. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture Using MODIS Land Surface Temperature for Hydrological Application. Water Resour. Manag. 2013, 8, 3127–3144. [Google Scholar] [CrossRef]
- Ge, Y.; Jin, Y.; Stein, A.; Chen, Y.; Wang, J.; Wang, J.; Cheng, Q.; Bai, H.; Liu, M.; Atkinson, P.M. Principles and Methods of Scaling Geospatial Earth Science Data. Earth-Sci. Rev. 2019, 197, 102897. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Wei, S.; Li, L.; Yao, Y.; Yu, F. Improved Daily SMAP Satellite Soil Moisture Prediction over China Using Deep Learning Model with Transfer Learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to Spatiotemporally seamless coverage of continental U.S. using a deep learning neural network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Shen, C. Near-real-time forecast of satellite-based soil moisture using Long Short-Term Memory with an adaptive data integration kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2021, 25, 17–40. [Google Scholar] [CrossRef]
- Ye, N.; Walker, J.P.; Wu, X.; de Jeu, R.; Gao, Y.; Jackson, T.J.; Jonard, F.; Kim, E.; Merlin, O.; Pauwels, V.R.N.; et al. the soil moisture active passive experiments: Validation of the SMAP products in Australia. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2922–2939. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chaney, N.W.; Schleiss, M.; Sheffield, J. Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res. 2016, 52, 8217–8237. [Google Scholar] [CrossRef]
- Im, J.; Park, S.; Rhee, J.; Baik, J.; Choi, M. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ. Earth Sci. 2016, 75, 1120. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS one kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Park, S.; Im, J.; Rhee, J.; Shin, J.; Park, J. Downscaling GLDAS soil moisture data in East Asia through fusion of multi-sensors by optimizing modified regression trees. Water 2017, 9, 332. [Google Scholar] [CrossRef] [Green Version]
- Abbaszadeh, P.; Moradkhani, H.; Zhan, X. Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resour. Res. 2019, 55, 324–344. [Google Scholar] [CrossRef]
- Sure, A.; Dikshit, O. Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the Indo-Gangetic basin. J. Environ. Manag. 2019, 234, 75–89. [Google Scholar] [CrossRef]
Dataset | Description | Variable |
---|---|---|
Landsat 8 OLI | 30 m OLI multispectral image | Visible-near infrared bands, Wet index |
MOD11A2 | 1 km 8-day LST product | LST |
MOD13A2 | 1 km 16-day VI product | NDVI, EVI |
MCD43A3 | 500 m 16-day ALB product | Albedo |
MCD15A2H | 1 km 8-day LAI product | LAI |
MOD16A2 | 1 km 8-day ET product | ET |
SMAP L4-SM | 9 km SMAP SM | SM |
GMTED2010 | 1 km DEM data | DEM |
AMSR-2 | 10 km AMSR-2 SM | SM |
SMN-SDR | In situ SM measurement | SM |
Blue | Red | Green | NIR | SWIR1 | SWIR2 | DEM | Slope | |
---|---|---|---|---|---|---|---|---|
R | −0.43 | −0.44 | −0.44 | −0.42 | −0.48 | −0.46 | 0.41 | 0.32 |
Aspect | NDVI | LST | EVI | WI | ALB_vis | ALB_nir | LAI | |
R | −0.20 | 0.69 | −0.58 | 0.63 | 0.74 | −0.69 | −0.66 | 0.21 |
Hidden_Layers_Structure | R2 | RMSE | RBM_Epochs | BP_Epochs |
---|---|---|---|---|
[500] | 0.4365 | 0.0452 | 50 | 200 |
[500, 500] | 0.5581 | 0.0412 | 50 | 200 |
[800, 800] | 0.5672 | 0.0400 | 50 | 200 |
[1000, 1000] | 0.5743 | 0.0392 | 50 | 200 |
[1000, 1000] | 0.6154 | 0.0374 | 50 | 400 |
[1000, 1000] | 0.6355 | 0.0321 | 50 | 800 |
[1000, 1000] | 0.6571 | 0.0296 | 100 | 800 |
[1000, 1000] | 0.6816 | 0.0245 | 200 | 800 |
[1000, 1000] | 0.7286 | 0.0219 | 400 | 800 |
Parameters | Value |
---|---|
hidden_layers_structure | [1000, 1000] |
cd_k | 1 |
RBM_epochs | 400 |
RBM_learning_rate | 0.1 |
BP_epochs | 800 |
BP_learning_rate | 0.1 |
batch_size | 16 |
dropout | 0.05 |
Station | L6 | M5 | S2 | |||
---|---|---|---|---|---|---|
SMAP | SMN-SDR | SMAP | SMN-SDR | SMAP | SMN-SDR | |
MAE | 0.0547 | 0.0257 | 0.0248 | 0.0161 | 0.0341 | 0.0203 |
MRE | 18.54% | 10.70% | 9.91% | 7.35% | 12.25% | 9.04% |
Parameters | Value |
---|---|
n_estimators | 106 |
max_depth | 14 |
max_features | 0.1 |
min_samples_leaf | 1 |
min_samples_split | 3 |
Model Name | R | R2 | RMSE | |||
---|---|---|---|---|---|---|
SMAP | SMN-SDR | SMAP | SMN-SDR | SMAP | SMN-SDR | |
SMD-RF | 0.7571 | 0.6939 | 0.5732 | 0.4816 | 0.0235 | 0.0342 |
SMD-DBN | 0.8357 | 0.7253 | 0.6984 | 0.5260 | 0.0210 | 0.0303 |
Model | R | R2 | RMSE | |||
---|---|---|---|---|---|---|
AMSR-2 | SMN-SDR | AMSR-2 | SMN-SDR | AMSR-2 | SMN-SDR | |
SMD-DBN | 0.8265 | 0.5356 | 0.6831 | 0.2631 | 0.0257 | 0.0321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Fan, P.; Lang, S.; Li, M.; Muhammad, Y.; Liu, A. Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network. Remote Sens. 2022, 14, 5681. https://doi.org/10.3390/rs14225681
Cai Y, Fan P, Lang S, Li M, Muhammad Y, Liu A. Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network. Remote Sensing. 2022; 14(22):5681. https://doi.org/10.3390/rs14225681
Chicago/Turabian StyleCai, Yulin, Puran Fan, Sen Lang, Mengyao Li, Yasir Muhammad, and Aixia Liu. 2022. "Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network" Remote Sensing 14, no. 22: 5681. https://doi.org/10.3390/rs14225681
APA StyleCai, Y., Fan, P., Lang, S., Li, M., Muhammad, Y., & Liu, A. (2022). Downscaling of SMAP Soil Moisture Data by Using a Deep Belief Network. Remote Sensing, 14(22), 5681. https://doi.org/10.3390/rs14225681