Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset
Abstract
:1. Introduction
2. The Stratified Random Sampling GLC Validation Dataset (SRS_Val)
2.1. Land Cover Standardized Classification System for SRS_Val Dataset
2.2. Allocating Validation Samples Using Stratified Equal-Area Sampling Method
2.3. Labeling and Quality-Controlling SRS_Val Dataset Using Visual Interpretation Method
3. Assessing Accuracy and Consistency of six GLC Products
3.1. Harmonization of Classification Systems for Six GLC Products
3.2. Accuracy Assessment Metrics
3.3. Consistency Assessment Metrics
3.3.1. Calculating Area-Based Consistency Coefficient
3.3.2. Applying Spatial-Based Consistency Methods
4. Results
4.1. Characteristics of the SRS_Val Dataset
4.1.1. Spatial Patterns and Quantitative Statistics
4.1.2. Interpretation Uncertainty
4.2. Accuracy Analysis of All GLC Products
4.2.1. Global Accuracy Assessment of Six GLC Products
4.2.2. Regional Accuracy Assessment of Six GLC Products
4.2.3. Relationship of Mapping Accuracy and Landscape Heterogeneity
4.3. Consistency Analysis of Six GLC Products
4.3.1. Area-Based Consistency Analysis among Six GLC Products
4.3.2. Spatial-Based Consistency Analysis among Six GLC Products
5. Discussion
5.1. The Superiorities and Limitations of the SRS_Val Dataset
5.2. Explanation of Discrepancies of Accuracy and Consistency among Land Cover Products
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619, 1394–1408. [Google Scholar] [PubMed]
- Pielke, R.A., Sr.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Int. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- McCarthy, M.; Harpham, C.; Harpham, C.; Goodess, C.; Jones, P. Simulating climate change in UK cities using a regional climate model, HadRM3. Int. J. Climatol. 2012, 32, 1875–1888. [Google Scholar] [CrossRef]
- Brovkin, V.; Claussen, M.; Driesschaert, E.; Fichefet, T.; Kicklighter, D.; Loutre, M.-F.; Matthews, H.; Ramankutty, N.; Schaeffer, M.; Sokolov, A. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim. Dyn. 2006, 26, 587–600. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Turner, W.; Rondinini, C.; Pettorelli, N.; Mora, B.; Leidner, A.K.; Szantoi, Z.; Buchanan, G.; Dech, S.; Dwyer, J.; Herold, M. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 2015, 182, 173–176. [Google Scholar] [CrossRef]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101, 534–553. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef]
- Brinck, K.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Dantas De Paula, M.; Pütz, S.; Sexton, J.O.; Song, D.; Huth, A. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 2017, 8, 14855. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Morales, C.; Díaz, A.S.-P.; Dionisio, D.; Guarnieri, L.; Marchi, G.; Maniatis, D.; Mollicone, D. Earth Map: A Novel Tool for Fast Performance of Advanced Land Monitoring and Climate Assessment. J. Remote Sens. 2023, 3, 0003. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S. ESA WorldCover 10 m 2020 v100; Zenodo: Geneve, Switzerland, 2021. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Tsendbazar, N.E.; Herold, M.; de Bruin, S.; Lesiv, M.; Fritz, S.; Van De Kerchove, R.; Buchhorn, M.; Duerauer, M.; Szantoi, Z.; Pekel, J.F. Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sens. Environ. 2018, 219, 298–309. [Google Scholar] [CrossRef]
- Ballin, M.; Barcaroli, G.; Masselli, M.; Scarnò, M. Redesign sample for land use/cover area frame survey (LUCAS) 2018. Eurostat. Stat. Work. Pap. 2018, 10, 132365. [Google Scholar] [CrossRef]
- Stehman, S.V.; Pengra, B.W.; Horton, J.A.; Wellington, D.F. Validation of the U.S. Geological Survey’s Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017. Remote Sens. Environ. 2021, 265, 112646. [Google Scholar] [CrossRef]
- Fonte, C.C.; Bastin, L.; See, L.; Foody, G.; Lupia, F. Usability of VGI for validation of land cover maps. Int. J. Geogr. Inf. Sci. 2015, 29, 1269–1291. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki. Geo-Wiki. Org: The use of crowdsourcing to improve global land cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Stehman, S.V.; Fonte, C.C.; Foody, G.M.; See, L. Using volunteered geographic information (VGI) in design-based statistical inference for area estimation and accuracy assessment of land cover. Remote Sens. Environ. 2018, 212, 47–59. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Key issues in rigorous accuracy assessment of land cover products. Remote Sens. Environ. 2019, 231, 111–199. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, L.; Zhang, X.; Chen, X.; Mi, J.; Xie, S. Consistency Analysis and Accuracy Assessment of Three Global 30-m Land-Cover Products over the European Union using the LUCAS Dataset. Remote Sens. 2020, 12, 3479. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liu, D.; Yang, W.; Zhang, W. Accuracy Assessment of GlobeLand30 2010 Land Cover over China Based on Geographically and Categorically Stratified Validation Sample Data. Remote Sens. 2018, 10, 1213. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Liu, X.; Pang, G.; Zhu, M.; Yang, L. Accuracy Assessment of the FROM-GLC30 Land Cover Dataset Based on Watershed Sampling Units: A Continental-Scale Study. Sustainability 2020, 12, 8435. [Google Scholar] [CrossRef]
- Dong, S.; Chen, Z.; Gao, B.; Guo, H.; Sun, D.; Pan, Y. Stratified even sampling method for accuracy assessment of land use/land cover classification: A case study of Beijing, China. Int. J. Remote Sens. 2020, 41, 6427–6443. [Google Scholar] [CrossRef]
- Jun, W.; Yang, X.; Wang, Z.; Cheng, H.; Kang, J.; Tang, H.; Li, Y.; Bian, Z.; Bai, Z. Consistency Analysis and Accuracy Assessment of Three Global Ten-Meter Land Cover Products in Rocky Desertification Region—A Case Study of Southwest China. ISPRS Int. J. Geo-Inf. 2022, 11, 202. [Google Scholar] [CrossRef]
- Kang, J.; Yang, X.; Wang, Z.; Cheng, H.; Wang, J.; Tang, H.; Li, Y.; Bian, Z.; Bai, Z. Comparison of Three Ten Meter Land Cover Products in a Drought Region: A Case Study in Northwestern China. Land 2022, 11, 427. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Gao, Y.; Chen, X.; Shuai, X.; Mi, J. Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. J. Remote Sens. 2021, 2021, 5289697. [Google Scholar] [CrossRef]
- Herold, M.; Woodcock, C.E.; Antonio di, G.; Mayaux, P.; Belward, A.S.; Latham, J.; Schmullius, C.C. A joint initiative for harmonization and validation of land cover datasets. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1719–1727. [Google Scholar] [CrossRef]
- Pontus Olofsson, G.M.F. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 2002, 22, 175–186. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Stehman, S.V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 2014, 35, 4923–4939. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Sui, L.; Yang, X.; Ma, Y.; Wang, J. Consistency Analysis of Remote Sensing Land Cover Products in the Tropical Rainforest Climate Region: A Case Study of Indonesia. Remote Sens. 2020, 12, 1410. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, M.; Jiang, H.; Wang, J.; Zhu, Y.; Liu, Y. Assessing Consistency of Five Global Land Cover Data Sets in China. Remote Sens. 2014, 6, 8739–8759. [Google Scholar] [CrossRef]
- Hua, T.; Zhao, W.; Liu, Y.; Wang, S.; Yang, S. Spatial Consistency Assessments for Global Land-Cover Datasets: A Comparison among GLC2000, CCI LC, MCD12, GLOBCOVER and GLCNMO. Remote Sens. 2018, 10, 1846. [Google Scholar] [CrossRef]
- Tsendbazar, N.E.; de Bruin, S.; Fritz, S.; Herold, M. Spatial Accuracy Assessment and Integration of Global Land Cover Datasets. Remote Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef]
- Lu, Y.; Sun, P.; Linghu, L.; Zhang, M. Uncertainty evaluation approach based on Shannon entropy for upscaled land use/cover maps. J. Land Use Sci. 2022, 17, 648–657. [Google Scholar] [CrossRef]
- Fitzpatrick-Lins, K. Comparison of sampling procedures and data analysis for a land-use and land-cover map. Photogramm. Eng. Remote Sens. 1981, 47, 343–351. [Google Scholar]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Xie, H.; Wang, F.; Gong, Y.; Tong, X.; Jin, Y.; Zhao, A.; Wei, C.; Zhang, X.; Liao, S. Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability. Sustainability 2022, 14, 2479. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Perger, C.; McCallum, I.; Schill, C.; Schepaschenko, D.; Duerauer, M.; Karner, M.; Dresel, C.; Laso-Bayas, J.C.; et al. A global dataset of crowdsourced land cover and land use reference data. Sci. Data 2017, 4, 170075. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Hay, A.M. Sampling designs to test land-use map accuracy. Photogramm. Eng. Remote Sens. 1979, 45, 529–533. [Google Scholar]
European Space Agency (ESA) WorldCover | ESRI Land Cover | FROM-GLC10 | GlobeLand30 | FROM-GLC30 | GLC_FCS30 | |
---|---|---|---|---|---|---|
Simplification | ESA_WC | ESRI_LC | FROM-GLC10 | GlobeLand30 | FROM-GLC30 | GLC_FCS30 |
Organization | European Space Agency | Environmental Systems Research Institute | Tsinghua University | National Geomatics Center of China | Tsinghua University | Chinese Academy of Sciences |
Sensor/Data Source | Sentinel-1/Sentinel-2 | Sentinel-2 | Sentinel-2 | Landsat TM/ETM+, HJ-1 A/B | Landsat TM/ETM+/OLI | Landsat TM/ETM+/OLI |
Spatial Resolution | 10 | 10 | 10 | 30 | 30 | 30 |
Time range | 2020 | 2017–2021 | 2017 | 2000, 2010, 2020 | 2015 | 1985–2020 |
Method | Random forest | Deep learning segmentation model | Random forest | POK (pixel-object-knowledge-based strategy) | Random forest | Local random forest |
Classification System | 11 classes | 10 classes | 10 classes | 10 classes | 26 classes | 29 classes |
Overall Accuracy | 0.744 | 0.850 | 0.728 | 0.803 | 0.773 | 0.825 |
Access | https://zenodo.org/record/5571936, accessed on 25 January 2023 | https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2, accessed on 25 January 2023 | http://data.ess.tsinghua.edu.cn/fromglc10_2017v01.html, accessed on 25 January 2023 | http://www.globallandcover.com/, accessed on 25 January 2023 | http://data.ess.tsinghua.edu.cn/fromglc2015_v1.html, accessed on 25 January 2023 | https://doi.org/10.5281/zenodo.3986872, accessed on 25 January 2023 |
Reference | Zanaga, et al. [19] | Karra, et al. [12] | Gong, et al. [18] | Chen, et al. [15] | Gong, et al. [16] | Zhang, et al. [17] |
Label | Description | Label | Description |
---|---|---|---|
10 | Rain-fed cropland | 130 | Grassland |
20 | Irrigated cropland | 140 | Lichens and mosses |
50 | Evergreen broadleaved forest | 150 | Sparse vegetation (fc < 0.15) |
60 | Deciduous broadleaved forest | 180 | Wetlands |
70 | Evergreen needleaved forest | 190 | Impervious surfaces |
80 | Deciduous needleaved forest | 200 | Bare areas |
90 | Mixed forest | 210 | Water body |
120 | Shrubland | 220 | Permanent snow/ice |
Generalized Land-Cover Type | Simplified Label | LCCS-Code | Validation Dataset | GlobeLand30 | FROM-GLC30 | GLC_FCS30 | FROM-GLC10 | ESA _WC | ESRI_LC |
---|---|---|---|---|---|---|---|---|---|
Cropland | CRP | A11-A3/A23-A1 | 10, 20 | 10 | 11, 12, 14, 15 | 10, 11, 12, 20 | 10 | 40 | 5 |
Forest | FST | A12-A3//A11-A1//A24-A3C1(C2) R1(R2) | 50, 60, 70, 80, 90 | 20 | 21, 22, 23, 24, 25, 26 | 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90 | 20 | 10 | 2 |
Grassland | GRS | A12-A2 | 130 | 30 | 31, 32, 33 | 130 | 30 | 30 | 3 |
Shrubland | SHR | A12-A4//A11-A2 | 120 | 40 | 41, 42 | 120, 121, 122 | 40 | 20 | 6 |
Wetlands | WET | A24-A1(A2/A4/A6) | 180 | 50 | 51, 52, 53 | 180 | 50 | 90, 95 | 4 |
Water body | WAT | B27-A1//B28-A1 | 210 | 60 | 60 | 210 | 60 | 80 | 1 |
Tundra | TUN | A12-A7 | 140 | 70 | 70 | 140 | 70 | 100 | |
Impervious surface | IMP | B15 | 190 | 80 | 80 | 190 | 80 | 50 | 7 |
Bare land | BAL | B16-A1(A2)//B15-A2 | 150, 200, 201, 202 | 90 | 90 | 150, 152, 153, 200, 201, 202 | 90 | 60 | 8 |
Snow/Ice | SNI | B27-A2(A3)//B28-A2(A3) | 220 | 100 | 101, 102 | 220 | 100 | 70 | 9 |
Standardized Classification System | Generalized Classification System | ||
---|---|---|---|
Land-Cover Type | Sample Size | Land-Cover Type | Sample Size |
Rainfed cropland | 13,670 | Cropland | 14,721 |
Irrigated cropland | 1051 | ||
Evergreen broadleaved forest | 9920 | Forests | 26,789 |
Deciduous broadleaved forest | 7879 | ||
Evergreen needleleaved forest | 5817 | ||
Deciduous needleleaved forest | 2063 | ||
Mixed forest | 1110 | ||
Shrubland | 10,031 | Shrubland | 10,031 |
Grassland | 10,980 | Grassland | 10,980 |
Lichens and mosses | 1625 | Tundra | 1625 |
Wetlands | 2303 | Wetlands | 2303 |
Impervious surface | 1486 | Impervious surface | 1486 |
Sparse vegetation | 2816 | Bare land | 6818 |
Bare areas | 4002 | ||
Water body | 3036 | Water | 3036 |
Permanent ice and snow | 1323 | Snow/Ice | 1323 |
GlobeLand30 | FROM-GLC30 | GLC_FCS30 | FROM-GLC10 | ESA_WC | ESRI_LC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P.A. | U.A. | P.A. | U.A. | P.A. | U.A. | P.A. | U.A. | P.A. | U.A. | P.A. | U.A. | |
CRP | 86.39 (±1) | 76.00 (±1) | 47.02 (±2) | 74.36 (±1) | 83.36 (±1) | 73.55 (±1) | 55.03 (±1) | 77.88 (±2) | 61.99 (±1) | 87.61 (±2) | 65.13 (±1) | 86.28 (±1) |
FST | 81.16 (±1) | 82.97 (±2) | 81.47 (±2) | 82.80 (±1) | 87.97 (±1) | 80.72 (±2) | 79.56 (±2) | 87.50 (±1) | 88.05 (±1) | 83.13 (±1) | 84.35 (±1) | 80.98 (±2) |
GRS | 72.09 (±2) | 43.52 (±2) | 69.08 (±1) | 36.76 (±2) | 48.14 (±2) | 61.38 (±2) | 65.18 (±2) | 39.82 (±2) | 72.25 (±2) | 43.13 (±2) | 13.54 (±2) | 54.50 (±3) |
SHR | 28.44 (±2) | 57.74 (±2) | 39.12 (±4) | 52.39 (±2) | 48.30 (±2) | 60.22 (±2) | 47.66 (±5) | 57.33 (±2) | 36.04 (±4) | 63.08 (±2) | 66.55 (±2) | 26.59 (±2) |
WET | 63.08 (±3) | 52.32 (±3) | 2.20 (±1) | 43.60 (±7) | 49.33 (±2) | 41.37 (±2) | 4.30 (±1) | 47.85 (±5) | 33.90 (±2) | 50.38 (±4) | 27.01 (±4) | 45.36 (±2) |
WAT | 85.27 (±2) | 86.32 (±1) | 88.18 (±1) | 77.48 (±2) | 81.37 (±1) | 92.68 (±1) | 87.07 (±1) | 89.22 (±1) | 90.48 (±1) | 89.72 (±1) | 87.05 (±1) | 86.84 (±1) |
IMP | 69.39 (±2) | 58.20 (±2) | 48.31 (±3) | 69.17 (±2) | 75.33 (±2) | 75.28 (±2) | 73.41 (±2) | 65.70 (±3) | 82.99 (±2) | 86.89 (±1) | 88.42 (±2) | 43.36 (±2) |
BAL | 73.48 (±4) | 93.59 (±2) | 83.17 (±3) | 86.51 (±3) | 85.69 (±3) | 79.76 (±5) | 89.31 (±2) | 80.32 (±3) | 81.00 (±3) | 82.70 (±5) | 44.41 (±4) | 91.11 (±3) |
SNI | 94.21 (±5) | 95.22 (±0) | 88.81 (±5) | 96.45 (±3) | 93.15 (±2) | 93.14 (±5) | 93.50 (±2) | 83.81 (±6) | 92.57 (±3) | 95.65 (±3) | 95.13 (±3) | 78.27 (±7) |
O.A. | 69.96 (±9) | 66.30 (±8) | 72.55 (±9) | 68.95 (±8) | 70.54 (±9) | 58.90 (±7) |
Continents | GlobeLand30 | FROM-GLC30 | GLC_FCS30 | FROM-GLC10 | ESA_WC | ESRI_LC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
O.A. | Num | O.A. | Num | O.A. | Num | O.A. | Num | O.A. | Num | O.A. | Num | |
Africa | 58.1 | 11,461 | 58.45 | 11,501 | 66.81 | 11,503 | 62.98 | 11,494 | 66.8 | 11,508 | 53.15 | 11,023 |
Asia | 75.1 | 24,645 | 69.24 | 26,715 | 73.59 | 26,712 | 71.87 | 26,711 | 73.48 | 26,722 | 59.61 | 22,092 |
Europe | 79 | 8599 | 65.43 | 9398 | 81.36 | 9397 | 68.31 | 9318 | 70.65 | 9421 | 75.22 | 7408 |
North America | 73.43 | 14,647 | 66.08 | 16,669 | 73.83 | 16,668 | 69.78 | 16,765 | 72.03 | 16,763 | 68.48 | 13,580 |
Oceania | 54 | 3896 | 51.28 | 3959 | 62 | 3834 | 55.92 | 3882 | 54.35 | 3958 | 54.56 | 3809 |
South America | 72.41 | 9996 | 64.88 | 10,032 | 73.78 | 10,041 | 69.47 | 10,055 | 73.97 | 10,059 | 70.25 | 9743 |
GlobeLand30 | FROM-GLC 30 | GLC_FCS30 | FROM-GLC10 | ESA_WC | ESRI_LC | |
---|---|---|---|---|---|---|
GlobeLand30 | 1.000 | |||||
FROM-GLC30 | 0.953 | 1.000 | ||||
GLC_FCS30 | 0.891 | 0.878 | 1.000 | |||
FROM-GLC10 | 0.926 | 0.987 | 0.909 | 1.000 | ||
ESA_WC | 0.974 | 0.991 | 0.890 | 0.971 | 1.000 | |
ESRI_LC | 0.483 | 0.551 | 0.698 | 0.590 | 0.543 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Zhang, X.; Gao, Y.; Mi, J.; Liu, W.; Wang, J.; Jiang, M.; Liu, L. Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset. Remote Sens. 2023, 15, 2285. https://doi.org/10.3390/rs15092285
Zhao T, Zhang X, Gao Y, Mi J, Liu W, Wang J, Jiang M, Liu L. Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset. Remote Sensing. 2023; 15(9):2285. https://doi.org/10.3390/rs15092285
Chicago/Turabian StyleZhao, Tingting, Xiao Zhang, Yuan Gao, Jun Mi, Wendi Liu, Jinqing Wang, Mihang Jiang, and Liangyun Liu. 2023. "Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset" Remote Sensing 15, no. 9: 2285. https://doi.org/10.3390/rs15092285
APA StyleZhao, T., Zhang, X., Gao, Y., Mi, J., Liu, W., Wang, J., Jiang, M., & Liu, L. (2023). Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset. Remote Sensing, 15(9), 2285. https://doi.org/10.3390/rs15092285