Variation in Vegetation Quality of Terrestrial Ecosystems in China: Coupling Analysis Based on Remote Sensing and Typical Stations Monitoring Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Ecological Division in China
2.2.2. Coupling Analysis Based on Typical Stations and Remote Sensing Retrieval Data
- (1)
- Analysis of spatio-temporal change in NDVI based on remote sensing retrieval data. ArcGIS 10.2 is used to calculate the area of various ecosystem types and analyze the spatial distribution characteristics of different ecosystems in China through regional statistics and spatial overlay. Through spatial overlay and spatial statistics, the spatio-temporal variation characteristics of NDVI were analyzed.
- (2)
- Analysis of vegetation change based on typical stations. We conduct dynamic analysis on NDVI of 1 km2 buffer zone around CERN station from 1998 to 2020. Firstly, we use point data to create a 1 km buffer. Secondly, we extract the average value of the grid within 1 km2 buffer. Thirdly, we use average values from 1998 to 2020 to analyze the changes in every station. China Ecosystem Research Network is an ecological network system composed of 42 ecological stations, 5 discipline sub-centers, and 1 comprehensive research center. Among the 42 ecological stations, there are 14 agricultural ecological stations, 11 forest ecological stations, 2 grassland ecological stations, 5 desert ecological stations, 7 water ecological stations, 1 wetland ecological station, 1 urban ecological station, and 1 karst ecological station (Table 1) [29].
2.2.3. Theil–Sen Median Trend Analysis and Mann–Kendall Significance Test
3. Results
3.1. Spatial Pattern of Terrestrial Ecosystem in China
3.2. Spatio-Temporal Changes in Vegetation Quality in China in the Last 20 Years
3.3. Change in Vegetation Quality at Typical Stations
3.3.1. Agricultural Ecosystem Stations
3.3.2. Forest Ecosystem Stations
3.3.3. Grassland Ecosystem Stations
3.3.4. Desert Ecosystem Stations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, M.; He, Y.; Song, C.; Pan, Y.; Qiu, T.; Tian, S. Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Sci. Total Environ. 2021, 786, 147574. [Google Scholar] [CrossRef]
- Gong, X.; Li, Y.; Wang, X.; Zhang, Z.; Lian, J.; Ma, L.; Chen, Y.; Li, M.; Si, H.; Cao, W. Quantitative assessment of the contributions of climate change and human activities on vegetation degradation and restoration in typical ecologically fragile areas of China. Ecol. Indic. 2022, 144, 109536. [Google Scholar] [CrossRef]
- Yang, S.; Song, S.; Li, F.; Yu, M.; Yu, G.; Zhang, Q.; Cui, H.; Wang, R.; Wu, Y. Vegetation coverage changes driven by a combination of climate change and human activities in Ethiopia, 2003–2018. Ecol. Inform. 2022, 71, 101776. [Google Scholar] [CrossRef]
- Jackson, R.B.; Randerson, J.T.; Canadell, J.G.; Anderson, R.G.; Avissar, R.; Baldocchi, D.D.; Bonan, G.B.; Caldeira, K.; Diffenbaugh, N.S.; Field, C.B.; et al. Protecting climate with forests. Environ. Res. Lett. 2008, 3, 044006. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, M.; Tang, Q. Characterizing and attributing the vegetation coverage changes in North Shanxi coal base of China from 1987 to 2020. Resour. Policy 2021, 74, 102331. [Google Scholar] [CrossRef]
- Chen, J.; Shao, Z.; Huang, X.; Zhuang, Q.; Dang, C.; Cai, B.; Zheng, X.; Ding, Q. Assessing the impact of drought-land cover change on global vegetation greenness and productivity. Sci. Total Environ. 2022, 852, 158499. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; A, Y. Changes in vegetation cover and its influencing factors in the Inner Mongolia reach of the yellow river basin from 2001 to 2018. Environ. Res. 2022, 215, 114253. [Google Scholar] [CrossRef]
- Beale, J.; Grabowski, R.C.; Lokidor, P.L.O.; Vercruysse, K.; Simms, D.M. Vegetation cover dynamics along two Himalayan rivers: Drivers and implications of change. Sci. Total Environ. 2022, 849, 157826. [Google Scholar] [CrossRef]
- Miller, D.L.; Wetherley, E.B.; Roberts, D.A.; Tague, C.L.; McFadden, J.P. Vegetation cover change during a multi-year drought in Los Angeles. Urban Clim. 2022, 43, 101157. [Google Scholar] [CrossRef]
- Bai, Y.; Li, S.; Liu, M.; Guo, Q. Assessment of vegetation change on the Mongolian Plateau over three decades using different remote sensing products. J. Environ. Manag. 2022, 317, 115509. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, M.; Liu, Y.; Guo, M.; Peng, C.; Li, P. Responses of autumn vegetation phenology to climate change and urbanization at northern middle and high latitudes. Int. J. Appl. Earth Obs. Geo-Inf. 2022, 115, 103086. [Google Scholar] [CrossRef]
- Geng, X.; Wang, X.; Fang, H.; Ye, J.; Han, L.; Gong, Y.; Cai, D. Vegetation coverage of desert ecosystems in the Qinghai-Tibet Plateau is underestimated. Ecol. Indic. 2022, 137, 108780. [Google Scholar] [CrossRef]
- Zhang, P.; Cai, Y.; He, Y.; Xie, Y.; Zhang, X.; Li, Z. Changes of vegetational cover and the induced impacts on hydrological processes under climate change for a high-diversity watershed of south China. J. Environ. Manag. 2022, 322, 115963. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Xu, G.; Wang, B.; Jia, L.; Xu, M. Vegetation cover change and restoration potential in the Ziwuling Forest Region, China. Ecol. Eng. 2023, 187, 106877. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, Z.; Lv, X.; Ma, L.; Zhang, Q.; Wang, J. Response of runoff to vegetation change in typical basin of the Loess Plateau. Ecol. Eng. 2022, 182, 106704. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, B.; Lou, H.; Wu, Z.; Wang, S.; Zhang, Y.; Pan, Z.; Li, C. Remote sensing hydrological indication: Responses of hydrological processes to vegetation cover change in mid-latitude mountainous regions. Sci. Total Environ. 2022, 851, 158170. [Google Scholar] [CrossRef]
- Sun, G.; Li, L.; Li, J.; Liu, C.; Wu, Y.; Gao, S.; Wang, Z.; Feng, G. Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis. Phys. Life Rev. 2022, 43, 239–270. [Google Scholar] [CrossRef]
- Shen, F.; Yang, L.; Zhang, L.; Guo, M.; Huang, H.; Zhou, C. Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in jiangsu, China. J. Environ. Manag. 2023, 325, 116562. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, F.; Duan, P.; Chi, Y.J.; Ngai, W.C.; Shi, J.; Liu, C.; Wang, J.; Bahtebay, J.; Ma, X. Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena 2022, 217, 106530. [Google Scholar] [CrossRef]
- Li, D.; Lu, D.; Zhao, Y.; Zhou, M.; Chen, G. Spatial patterns of vegetation coverage change in giant panda habitat based on MODIS time-series observations and local indicators of spatial association. Ecol. Indic. 2021, 124, 107418. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, M.; Dong, J. The use of random forest to identify climate and human interference on vegetation coverage changes in southwest China. Ecol. Indic. 2022, 144, 109463. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2022, 860, 160527. [Google Scholar] [CrossRef]
- Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Lin, M.; Hou, L.; Qi, Z.; Wan, L. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic. 2022, 142, 109164. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Wang, C.; Zhang, T.; Dong, X.; Liu, Y. Vegetation dynamics influenced by climate change and human activities in the Hanjiang River Basin, central China. Ecol. Indic. 2022, 145, 109586. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, D.; Zhang, G.; Wu, X.; Yang, Y.; Wang, Z. Using SPOT/VEGETATION for analyzing dynamic changes and influencing factors on vegetation restoration in the Three-River Headwaters Region in the last 20 years (2000–2019), China. Ecol. Eng. 2022, 183, 106742. [Google Scholar] [CrossRef]
- Fu, B.; Li, S.; Yu, X.; Yang, P.; Yu, G.; Feng, R.; Zhuang, X. Chinese ecosystem research network: Progress and perspectives. Ecol. Complex. 2010, 7, 225–233. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, X.; Xu, C. Social-ecological system management in drylands: Experiences from Chinese Ecosystem Research Network. Curr. Opin. Environ. Sustain. 2021, 48, 93–102. [Google Scholar] [CrossRef]
- Xiaojing, W.; Honglin, H.; Zhang, L.; Feng, L.; Ren, X.; Liu, W.; Zou, C.; Lin, N. Spatial sampling design optimization of monitoring network for terrestrial ecosystem in China. Sci. Total Environ. 2022, 847, 157397. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Xiong, J.; Ye, S.; Zou, B.; Wang, W. Vegetation change enhanced the positive global surface radiation budget. Adv. Space Res. 2022, 70, 324–335. [Google Scholar] [CrossRef]
- Fu, B.; Lan, F.; Xie, S.; Liu, M.; He, H.; Li, Y.; Liu, L.; Huang, L.; Fan, D.; Gao, E.; et al. Spatio-temporal coupling coordination analysis between marsh vegetation and hydrology change from 1985 to 2019 using LandTrendr algorithm and Google Earth Engine. Ecol. Indic. 2022, 137, 108763. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, C.; Xia, J.; Yeh, P.J.F. Responses of vegetation to changes in terrestrial water storage and temperature in global mountainous regions. Sci. Total Environ. 2022, 851, 158416. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, G.; Yan, L.; Wu, J.; Li, J.; Liu, S.; Lu, Y. Effects of different vegetation types on ecosystem respiration in semiarid Loess Hilly Region, Central Gansu Province, China. Ecol. Indic. 2022, 145, 109683. [Google Scholar] [CrossRef]
- Bai, X.; Fu, J.; Li, Y.; Li, Z. Attributing vegetation change in an arid and cold watershed with complex ecosystems in northwest China. Ecol. Indic. 2022, 138, 108835. [Google Scholar] [CrossRef]
- Chen, N.; Song, C.; Xu, X.; Wang, X.; Cong, N.; Jiang, P.; Zu, J.; Sun, L.; Song, Y.; Zuo, Y.; et al. Divergent impacts of atmospheric water demand on gross primary productivity in three typical ecosystems in China. Agric. For. Meteorol. 2021, 307, 108527. [Google Scholar] [CrossRef]
- Tang, X.; Xiao, J.; Ma, M.; Yang, H.; Li, X.; Ding, Z.; Yu, P.; Zhang, Y.; Wu, C.; Huang, J.; et al. Satellite evidence for China’s leading role in restoring vegetation productivity over global karst ecosystems. For. Ecol. Manag. 2022, 507, 120000. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, H.; Yao, T.; Xue, Y.; Feng, W. Enhancing sustainability of vegetation ecosystems through ecological engineering: A case study in the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116576. [Google Scholar] [CrossRef]
- Leng, X.; Feng, X.; Fu, B. Driving forces of agricultural expansion and land degradation indicated by Vegetation Continuous Fields (VCF) data in drylands from 2000 to 2015. Glob. Ecol. Conserv. 2020, 23, e01087. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Liu, J. Spatial variation and influencing factors of the effectiveness of afforestation in China’s Loess Plateau. Sci. Total Environ. 2021, 771, 144904. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.; Wang, L.; Zhang, J. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, G.; Liu, S.; Sun, P.; Agathokleous, E. Impacts of forest management intensity on carbon accumulation of China’s forest plantations. For. Ecol. Manag. 2020, 472, 118252. [Google Scholar] [CrossRef]
Agricultural Ecosystems: 14 | Forest Ecosystems: 11 | Desert Ecosystems: 5 | Grass Ecosystems: 2 | ||||
---|---|---|---|---|---|---|---|
ACA | Akesu | BJF | BeijingF | CLD | Cele | HBG | Haibei |
LSA | Lasa | MXF | Maoxian | ESD | Erdos | NMG | Neimenggu |
HLA | Hailun | GGF | Gonggashan | FKD | Fukang | ||
YCA | Yucheng | ALF | Ailaoshan | NMD | Naiman | ||
ASA | Ansai | BNF | Banna | SPD | Shapotou | ||
CWA | Changwu | HSF | Heshan | ||||
YTA | Yingtan | DHF | Dinghushan | ||||
CSA | Changshu | SNF | Shennongjia | ||||
TYA | Taoyuan | HTF | Huitong | ||||
FQA | Fengqiu | CBF | Changbaishan | ||||
YGA | Yanting | QYF | Qianyanzhou | ||||
LCA | Luancheng | ||||||
SYA | Shenyang | ||||||
LZA | Linze |
SNDVI | Z | p | NDVI Change Trend |
---|---|---|---|
S > 0 | |Z| > 2.58 | p < 0.01 | Highly significant increase |
S > 0 | |Z| > 1.96 | p < 0.05 | Significant increase |
|Z| < 1.96 | p > 0.05 | No trend (stable) | |
S < 0 | |Z| > 1.96 | p < 0.05 | Significant decrease |
S < 0 | |Z| > 2.58 | p < 0.01 | Highly significant decrease |
Name | Trend | h | p | z | Slope 10−2 | |
---|---|---|---|---|---|---|
1 | HLA | Significant decreasing | TRUE | p < 0.05 | −2.41 | −0.38 |
2 | SYA | Highly significant increasing | TRUE | p < 0.01 | 2.70 | 0.24 |
3 | YCA | Highly significant increasing | TRUE | p < 0.01 | 2.65 | 0.32 |
4 | FQA | Significant increasing | TRUE | p < 0.05 | 2.55 | 0.25 |
5 | LCA | Highly significant decreasing | TRUE | p < 0.01 | −2.85 | −0.57 |
6 | CSA | Highly significant decreasing | TRUE | p < 0.01 | −3.70 | −1.04 |
7 | TYA | Highly significant increasing | TRUE | p < 0.01 | 4.49 | 0.48 |
8 | YTA | Highly significant increasing | TRUE | p < 0.01 | 4.19 | 0.45 |
9 | YGA | Significant increasing | TRUE | p < 0.05 | 2.26 | 0.21 |
10 | ASA | Highly significant increasing | TRUE | p < 0.01 | 5.63 | 1.16 |
11 | CWA | Highly significant increasing | TRUE | p < 0.01 | 5.28 | 1.05 |
12 | LZA | Highly significant increasing | TRUE | p < 0.01 | 3.84 | 0.49 |
13 | LSA | No trend | FALSE | 0.3587 | 0.92 | 0.13 |
14 | ACA | Highly significant increasing | TRUE | p < 0.01 | 5.28 | 1.24 |
15 | CBF | Highly significant increasing | TRUE | p < 0.01 | 3.70 | 0.19 |
16 | BJF | Highly significant increasing | TRUE | p < 0.01 | 5.04 | 0.43 |
17 | HTF | Highly significant increasing | TRUE | p < 0.01 | 4.34 | 0.43 |
18 | DHF | Highly significant increasing | TRUE | p < 0.01 | 4.94 | 0.38 |
19 | HSF | Highly significant increasing | TRUE | p < 0.01 | 5.18 | 0.66 |
20 | MXF | Highly significant increasing | TRUE | p < 0.01 | 5.23 | 0.26 |
21 | GGF | No trend | FALSE | 0.0870 | 1.71 | 0.21 |
22 | ALF | Highly significant increasing | TRUE | p < 0.01 | 3.35 | 0.20 |
23 | BNF | No trend | FALSE | 0.1574 | 1.41 | 0.13 |
24 | SNF | Highly significant increasing | TRUE | p < 0.01 | 5.23 | 0.36 |
25 | QYF | Highly significant increasing | TRUE | p < 0.01 | 3.99 | 0.39 |
26 | NMG | No trend | FALSE | 0.1725 | 1.36 | 0.24 |
27 | HBG | Highly significant increasing | TRUE | p < 0.01 | 4.24 | 0.24 |
28 | NMD | Highly significant increasing | TRUE | p < 0.01 | 4.89 | −0.04 |
29 | SPD | Highly significant increasing | TRUE | p < 0.01 | 3.60 | 0.96 |
30 | ESD | Highly significant increasing | TRUE | p < 0.01 | 5.43 | 0.43 |
31 | FKD | Highly significant increasing | TRUE | p < 0.01 | 4.39 | 1.59 |
32 | CLD | Highly significant increasing | TRUE | p < 0.01 | 6.37 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Liu, Y.; Xu, H. Variation in Vegetation Quality of Terrestrial Ecosystems in China: Coupling Analysis Based on Remote Sensing and Typical Stations Monitoring Data. Remote Sens. 2023, 15, 2276. https://doi.org/10.3390/rs15092276
Jiang L, Liu Y, Xu H. Variation in Vegetation Quality of Terrestrial Ecosystems in China: Coupling Analysis Based on Remote Sensing and Typical Stations Monitoring Data. Remote Sensing. 2023; 15(9):2276. https://doi.org/10.3390/rs15092276
Chicago/Turabian StyleJiang, Luguang, Ye Liu, and Haixia Xu. 2023. "Variation in Vegetation Quality of Terrestrial Ecosystems in China: Coupling Analysis Based on Remote Sensing and Typical Stations Monitoring Data" Remote Sensing 15, no. 9: 2276. https://doi.org/10.3390/rs15092276
APA StyleJiang, L., Liu, Y., & Xu, H. (2023). Variation in Vegetation Quality of Terrestrial Ecosystems in China: Coupling Analysis Based on Remote Sensing and Typical Stations Monitoring Data. Remote Sensing, 15(9), 2276. https://doi.org/10.3390/rs15092276