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Abstract: Vegetation is the most important component of the terrestrial ecosystem. Scientific and
quantitative analysis of changes in vegetation quality is of great significance to the realization
of ecosystem sustainability. Based on data of remote sensing and typical station monitoring, we
examined dynamic NDVI (Normalized Difference Vegetation Index) changes in typical ecosystems
from 1998 to 2020. We found that about 1/3 of China’s regions had significantly improved vegetation
quality in the past 22 years, and 10% of the region had decreased, which indicated that China’s
ecological situation is continuously improving. There is a large spatial heterogeneity in the trend of
NDVI changes. The NDVI of agricultural and forest stations in the north of China rose relatively
slowly. The NDVI of desert stations has a significant upward trend. The large-scale implementation of
ecological restoration projects had improved vegetation conditions. The NDVI of forest stations and
agricultural stations in the south of China still showed growth, which already has better vegetation
conditions. This research can provide theoretical support for the long-term monitoring of different
ecosystem types and ecological protection in China.

Keywords: vegetation quality; terrestrial ecosystem; typical stations; remote sensing retrieval data;
spatio-temporal change

1. Introduction

The most crucial element of the terrestrial ecosystem is vegetation, which also serves as
the foundation for preserving ecological quality [1–3]. As an important linker of ecological
elements such as atmosphere, soil, and water and an important participant in the energy
cycle of the ecosystem [4], vegetation supports the sustainable development of the natural
ecosystem and human society. The good growth of surface vegetation can not only conserve
water and soil, and prevent wind and sand, but also regulate the microclimate and beautify
the urban environment [5]. On the contrary, poor vegetation will cause regional ecosystem
degradation and even cause adverse effects on large-scale ecological conditions [6]. At
present, the research on the relationship between vegetation change and the ecosystem
is constantly deepening and improving and has become a hot field of global ecosystem
change research. With the intensification of climate change and human disturbance, the
dynamic changes in vegetation among different ecosystems in China have spatio-temporal
differences. Therefore, scientific and quantitative analysis of changes in vegetation quality
is of great significance to the realization of regional ecosystem sustainability.

Under the condition that ground monitoring cannot quickly grasp the macroscopic
pattern and situation, remote sensing technology has gradually become an important
research tool for vegetation change. Remote sensing technology has the characteristics of
a wide detection range, strong real-time dynamic, and comprehensive information. At
present, it has been widely applied to large-scale ecological resources monitoring and
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investigation and urban area research [7]. At present, many scholars have discussed the
trend of regional vegetation dynamic change [8], such as the dynamic change in vegetation
at different scales [9,10], the integration of different remote sensing data products [11–13],
dynamic changes in vegetation in different typical areas [14,15]. At the same time, some
scholars have also carried out research on the influencing factors of vegetation dynamic
change [16,17]. In terms of climate change, many studies focus on the factors and specific
coupling relationships that dominate the fluctuation of vegetation change [18,19]. In terms
of human activities, some studies have explored the positive impact of afforestation on
NDVI [20] and the negative impact of human activities on vegetation change, such as the
change in land use type caused by human activities [21,22]. In terms of the analysis method
of the driving mechanism, many studies simulate the trend change in NDVI by quantifying
the impact of human activity factors and residual analysis [23]. There are also some studies
that distinguish the contribution of natural factors and human factors to the impact of
vegetation change [1,24–26].

The dynamic change in vegetation has spatial differences and periodicity, and there are
significant differences in different times, different ecosystems, and different geographical
locations [27]. Therefore, it is necessary to put the change in NDVI in different ecosystem
types for unified research, so as to fully understand the overall situation and regional
differences of the change in NDVI in different ecosystems. The Chinese Ecosystem Research
Network (CERN) was established by the Chinese Academy of Sciences in 1988. Its purpose
is to study the structure, function, and change rules of China’s ecosystem and improve
the level of research on China’s ecology and related disciplines [28,29]. Combining this
huge monitoring data network and exploring the dynamic changes in vegetation at various
typical terrestrial ecosystem stations in CERN will help to grasp the ecological change
characteristics of the study area in real time [28,30].

The focus of our study is as follows: First, we have tried to reveal the spatio-temporal
changes in vegetation quality in China in the past 22 years. Second, we have tried to reveal
the changes in vegetation quality in different ecosystem types based on typical stations.
The research results are conducive to exploring and summarizing the ecological construc-
tion plans of typical ecosystems, providing theoretical support for long-term monitoring
and evaluation of different ecosystem types in China, coping with climate change and
ecological protection.

2. Materials and Methods
2.1. Materials

Normalized difference vegetation index (NDVI) can accurately reflect the quality of
surface vegetation. At present, NDVI time series data based on MODIS satellite remote
sensing images have been widely used in the research of vegetation dynamic change
monitoring at various scales. We use the MOD13Q1 data on the GEE platform to extract the
annual maximum values of the surface and each station from 1998 to 2020. The dataset is
from NASA LP DAAC, with a spatial resolution of 250 m. The data ID in the GEE platform
is (ee.ImageCollection (MODIS/061/MOD13Q1)).

The types of terrestrial ecosystems in China are based on the classification of China’s
land use data in 2020 and are mainly divided into seven types of ecosystems: (1) farmland
ecosystems include paddy fields and dry lands; (2) the forest ecosystem includes woodland,
shrub, sparse woodland and other woodlands; (3) the grassland ecosystem includes high
coverage grassland, medium coverage grassland, and low coverage grassland; (4) the water
ecosystem includes marshes, canals, lakes, reservoirs, glaciers, permanent snow cover and
beaches; (5) desert ecosystem includes sandy land, Gobi, saline–alkali land, and alpine
desert; (6) urban ecosystem includes towns, rural residential areas, and industrial and
mining areas; (7) other ecosystems include bare land and bare gravel land. The data are
from Resource and Environment Science Data Center of Chinese Academy of Sciences
(https://www.resdc.cn/DOI/DOI.aspx?DOIID=54, accessed on 1 February 2023), and the
spatial resolution is 1 km.

https://www.resdc.cn/DOI/DOI.aspx?DOIID=54
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China’s ecological region data comes from China’s Ecosystem Assessment and Ecologi-
cal Security Database. The data are divided from top to bottom according to the hierarchical
system of ecological function zoning by means of spatial overlay and correlation analy-
sis, expert integration (https://www.ecosystem.csdb.cn/ecoass/ecoplanning.jsp, accessed
on 1 February 2023). CERN location data are from China Ecosystem Research Network
(http://www.cern.ac.cn/0index/index.asp, accessed on 1 February 2023).

2.2. Methods
2.2.1. Ecological Division in China

China can be divided into three ecological regions, namely, the Eastern Monsoon
Region, the Western Arid Region, and the Qinghai–Tibet Alpine Region, according to the
natural conditions such as the landform, the characteristics of water, and heat combination
(Figure 1). The Eastern Monsoon Region is located in the vast area to the east of the Great
Khingan Mountains, the south of the Inner Mongolia Plateau, and the east of the eastern
edge of the Qinghai–Tibet Plateau. The Eastern Monsoon Region is facing the sea and the
plateau. It is significantly affected by the ocean monsoon in summer and is generally hot
and rainy. Affected by the cold air flow in the north in winter, most areas are cold and dry,
and the wind direction and precipitation have obvious changes with the seasons. There are
33 ecological regions in the Eastern Monsoon Region, mainly involving urban ecological
regions, forest ecological regions, and agricultural ecological regions. The Western Arid
Region is located in the non-monsoon region west of the Great Khingan–Helan Mountains
and north of the Qilian–Kunlun Mountains. The climate in the Western Arid Region belongs
to the temperate continental climate. The daily and annual temperature ranges are large.
The annual precipitation is 50–400 mm and climate is dry. There are 8 ecological regions
in the Western Arid Region, mainly involving desert ecological regions and grassland
ecological regions. The Qinghai–Tibet Plateau is located in the Qinghai–Tibet Plateau area
west of the Hengduan Mountains, north of the Himalayas, and south of the Kunlun–Algin
Mountains. The Qinghai–Tibet Plateau is characterized by high altitude, low temperature,
low precipitation, and large regional differences. There are 9 ecological regions in the
Qinghai–Tibet Plateau, mainly involving alpine grassland and alpine desert ecological
regions.

One of the goals of CERN is to monitor the land cover and land use status of China’s
main farmland, forest, grassland, desert, and other ecosystems, as well as the areas around
the ecological stations. The setting and distribution of stations are based on the ecological
region of China, so CERN can comprehensively reflect the vegetation quality of the area
around CERN at the station level (Table 1).

2.2.2. Coupling Analysis Based on Typical Stations and Remote Sensing Retrieval Data

(1) Analysis of spatio-temporal change in NDVI based on remote sensing retrieval data.
ArcGIS 10.2 is used to calculate the area of various ecosystem types and analyze the
spatial distribution characteristics of different ecosystems in China through regional
statistics and spatial overlay. Through spatial overlay and spatial statistics, the spatio-
temporal variation characteristics of NDVI were analyzed.

(2) Analysis of vegetation change based on typical stations. We conduct dynamic analysis
on NDVI of 1 km2 buffer zone around CERN station from 1998 to 2020. Firstly, we
use point data to create a 1 km buffer. Secondly, we extract the average value of the
grid within 1 km2 buffer. Thirdly, we use average values from 1998 to 2020 to analyze
the changes in every station. China Ecosystem Research Network is an ecological
network system composed of 42 ecological stations, 5 discipline sub-centers, and
1 comprehensive research center. Among the 42 ecological stations, there are 14
agricultural ecological stations, 11 forest ecological stations, 2 grassland ecological
stations, 5 desert ecological stations, 7 water ecological stations, 1 wetland ecological
station, 1 urban ecological station, and 1 karst ecological station (Table 1) [29].

https://www.ecosystem.csdb.cn/ecoass/ecoplanning.jsp
http://www.cern.ac.cn/0index/index.asp
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Figure 1. Ecological region and spatial distribution of typical stations in China.

Table 1. List of agricultural, forest, desert, grassland, and urban ecosystem stations.

Agricultural Ecosystems: 14 Forest Ecosystems: 11 Desert Ecosystems: 5 Grass Ecosystems: 2

ACA Akesu BJF BeijingF CLD Cele HBG Haibei
LSA Lasa MXF Maoxian ESD Erdos NMG Neimenggu
HLA Hailun GGF Gonggashan FKD Fukang
YCA Yucheng ALF Ailaoshan NMD Naiman
ASA Ansai BNF Banna SPD Shapotou
CWA Changwu HSF Heshan
YTA Yingtan DHF Dinghushan
CSA Changshu SNF Shennongjia
TYA Taoyuan HTF Huitong
FQA Fengqiu CBF Changbaishan
YGA Yanting QYF Qianyanzhou
LCA Luancheng
SYA Shenyang
LZA Linze
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2.2.3. Theil–Sen Median Trend Analysis and Mann–Kendall Significance Test

We used Theil–Sen Median trend analysis and Mann–Kendall significance test to
analyze the spatio-temporal evolution characteristics and significance of NDVI changes
in vegetation in the 1 km2 buffer zone around the ecosystem stations from 1998 to 2020.
Theil–Sen Median trend analysis is a non-parametric statistical trend analysis method,
which can effectively remove the impact of discrete values and outliers on the trend results
and is often used to explore the change trend of long time series data. Mann–Kendall
significance test is a robust non-parametric statistical method to avoid the influence of
outliers on the analysis results to a certain extent. We use Mann–Kendall significance test
to judge the significance of NDVI time series change trend of vegetation.

According to the Z value of the test statistic of Mann–Kendall significance test, the
NDVI change trend is divided into five grades: highly significant decrease, significant
decrease, stable, significant increase, and highly significant increase (Table 2).

Table 2. NDVI change trend and significance test.

SNDVI Z p NDVI Change Trend

S > 0 |Z| > 2.58 p < 0.01 Highly significant increase
S > 0 |Z| > 1.96 p < 0.05 Significant increase

|Z| < 1.96 p > 0.05 No trend (stable)
S < 0 |Z| > 1.96 p < 0.05 Significant decrease
S < 0 |Z| > 2.58 p < 0.01 Highly significant decrease

3. Results
3.1. Spatial Pattern of Terrestrial Ecosystem in China

China’s terrestrial ecosystems mainly include forest ecosystems, grassland ecosystems,
desert ecosystems, water ecosystems, farmland ecosystems, and urban ecosystems. Figure 2
shows the spatial distribution pattern of China’s ecosystem in 2020. The urban ecosystem
is mainly distributed in the humid and semi-humid areas in the central and eastern regions,
with a total area of 2.22 × 105 km2 in 2020, accounting for 2.34% of China’s land area.
The farmland ecosystem is mainly distributed in Northeast, North China, the middle and
lower reaches of the Yangtze River Plain, the Sichuan Basin, the Guanzhong Basin, and
the northwest arid oasis area, with flat terrain and concentrated and contiguous cultivated
land. In 2020, the total area of the farmland ecosystem is 1.786 million km2, accounting for
18.80% of China’s land area. The forest ecosystem is mainly distributed in the middle and
high mountains in the middle and east and concentrated in the Greater Khingan Range
and Changbai Mountains in the northeast, the subtropical mountains in the southeast, and
the Hengduan Mountains in the southwest. In 2020, the total area of forest ecosystem is
2.24 million km2, accounting for 23.58% of China’s land area. The water ecosystem is
scattered, with a large distribution area on the Qinghai–Tibet Plateau. In 2020, the total area
is 35.82 × 104 km2, accounting for 3.77% of China’s land area. The grassland ecosystem is
mainly distributed in the arid and semi-arid areas in the northwest and the alpine region
in the southwest, with a total area of 2.99 million km2 in 2020, accounting for 31.48% of
China’s land area. The desert ecosystem is mainly distributed in the northwest inland
area, with flat terrain and sparse precipitation. The total area in 2020 is 1.18 million km2,
accounting for 12.46% of China’s land area.

3.2. Spatio-Temporal Changes in Vegetation Quality in China in the Last 20 Years

From 1998 to 2020, about 1/3 of China’s regions (3.04 × 106 km2) had an increase in
NDVI (the average NDVI increased by more than 0.1), indicating that China’s ecological
situation was continuously improving (Figure 3). NDVI is decreasing in 10% of the area
(3.54 × 105 km2) (the average NDVI is decreasing by more than 0.1). The area with
significant decline is mainly divided into two parts: one is the urban built-up area, mainly
due to the degradation of vegetation quality caused by urbanization; the second is desert
and grassland, which are mainly caused by poor natural conditions. The areas with
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significant improvement in vegetation quality are mainly concentrated in three major areas:
the Loess Plateau, Yunnan–Guizhou Plateau, and the semi-arid region. Among them, the
average value of NDVI in the Loess Plateau increased by 0.13; the average of NDVI in
Yunnan–Guizhou Plateau increased by 0.11; due to its large scope, the northern arid region
has the largest area of NDVI increase (6.29 × 105 km2), although the overall average NDVI
increase is small. NDVI increased significantly in some areas around the Tarim Basin.
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3.3. Change in Vegetation Quality at Typical Stations
3.3.1. Agricultural Ecosystem Stations

Among the fourteen stations belonging to the agricultural ecosystem, only three sta-
tions of NDVI show a downward trend, of which LCA and CSA showed a very significant
downward trend (slope = −5.68 × 10−3 and slope = −1.04 × 10−2, p < 0.01), HLA showed
a significant downward trend (slope = −3.81 × 10−3, p < 0.05) (Figure 4). Among the other
eleven stations, eight stations (ACA, ASA, LZA, TTA, YGA, YTA, YCA, and CWA) showed a
very significant upward trend, with a slope range of −5.68 × 10−3 < slope < −1.05 × 10−2,
p < 0.01. The slope of NDVI in FQA and YTA is 2.48 × 10−3 and 4.49 × 10−3, p < 0.05.
However, LSA did not pass the significance level test of 0.05, and there was no obvious
change trend (Table 3).
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Table 3. NDVI change trend and significance test statistics of ecosystem stations.

Name Trend h p z Slope 10−2

1 HLA Significant decreasing TRUE p < 0.05 −2.41 −0.38
2 SYA Highly significant increasing TRUE p < 0.01 2.70 0.24
3 YCA Highly significant increasing TRUE p < 0.01 2.65 0.32
4 FQA Significant increasing TRUE p < 0.05 2.55 0.25
5 LCA Highly significant decreasing TRUE p < 0.01 −2.85 −0.57
6 CSA Highly significant decreasing TRUE p < 0.01 −3.70 −1.04
7 TYA Highly significant increasing TRUE p < 0.01 4.49 0.48
8 YTA Highly significant increasing TRUE p < 0.01 4.19 0.45
9 YGA Significant increasing TRUE p < 0.05 2.26 0.21
10 ASA Highly significant increasing TRUE p < 0.01 5.63 1.16
11 CWA Highly significant increasing TRUE p < 0.01 5.28 1.05
12 LZA Highly significant increasing TRUE p < 0.01 3.84 0.49
13 LSA No trend FALSE 0.3587 0.92 0.13
14 ACA Highly significant increasing TRUE p < 0.01 5.28 1.24
15 CBF Highly significant increasing TRUE p < 0.01 3.70 0.19
16 BJF Highly significant increasing TRUE p < 0.01 5.04 0.43
17 HTF Highly significant increasing TRUE p < 0.01 4.34 0.43
18 DHF Highly significant increasing TRUE p < 0.01 4.94 0.38
19 HSF Highly significant increasing TRUE p < 0.01 5.18 0.66
20 MXF Highly significant increasing TRUE p < 0.01 5.23 0.26
21 GGF No trend FALSE 0.0870 1.71 0.21
22 ALF Highly significant increasing TRUE p < 0.01 3.35 0.20
23 BNF No trend FALSE 0.1574 1.41 0.13
24 SNF Highly significant increasing TRUE p < 0.01 5.23 0.36
25 QYF Highly significant increasing TRUE p < 0.01 3.99 0.39
26 NMG No trend FALSE 0.1725 1.36 0.24
27 HBG Highly significant increasing TRUE p < 0.01 4.24 0.24
28 NMD Highly significant increasing TRUE p < 0.01 4.89 −0.04
29 SPD Highly significant increasing TRUE p < 0.01 3.60 0.96
30 ESD Highly significant increasing TRUE p < 0.01 5.43 0.43
31 FKD Highly significant increasing TRUE p < 0.01 4.39 1.59
32 CLD Highly significant increasing TRUE p < 0.01 6.37 0.70

In terms of specific NDVI value changes, ACA increased from 0.43 to 0.73, with a
growth rate of 71.64%, ASA increased from 0.47 to 0.73, with a growth rate of 46.21%,
and CWA increased from 0.53 to 0.81, with a growth rate of 44.39%. The NDVI of SYA,
YCA, FQA, TYA, YTA, YGA, and LZA all showed an increase in varying degrees, with a
growth rate of between 5% and 20%. LSA has no obvious change trend. HLA decreased
from 0.74 to 0.66, with a growth rate of −0.74%, LCA from 0.75 to 0.59, with a growth rate
of—13.43%, CSA from 0.76 to 0.42, with a growth rate of—40.25%.

3.3.2. Forest Ecosystem Stations

Among the eleven stations belonging to the forest ecosystem, the NDVI of nine stations
in CBF, BJF, SNF, HSF, DHF, ALF, MXF, HTF, and QYF showed a very significant upward
trend, with a slope of 1.88 × 10−3–6.62 × 10−3, p < 0.01 (Figure 5). The slope of HSF is the
largest, showing a very significant increase trend (6.62 × 10−3, p < 0.01). The slope of CBF
is the smallest (1.88 × 10−3, p < 0.01). However, GGF and BNF did not pass the significance
level test (p > 0.05) but showed a slight upward trend.

Specifically, the NDVI of BNF increased the least, with a growth rate of only 1.76%.
The NDVI growth rates of the rest stations are distributed between 5% and 20%. The
growth rates of CBF, BJF, HTF, DHF, HSF, MXF, ALF, SNF, and QYF are 11.63%, 11.71%,
22.05%, 15.83%, 19.60%, 20.22%, 6.89%, 16.50%, and 11.60%, respectively. The NDVI of GGS
does not change significantly.
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3.3.3. Grassland Ecosystem Stations

Among the two stations belonging to the grassland ecosystem, the NDVI of HBG shows
a very significant upward trend (Figure 6). The slope of NDVI change is slope = 2.45 × 10−3,
p < 0.01, the low-value year appeared in 2000, and the high-value year appeared in 2018.
The NMG did not pass the significance test (p > 0.1). From the specific value, HBG increased
from 0.79 to 0.86, with a growth rate of 6.09%. Although the NDVI of NMG fluctuated,
there was no significant change.
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Figure 6. NDVI change trend of grassland ecosystem stations: (a) highly significant increase;
(b) no trend.

3.3.4. Desert Ecosystem Stations

The five stations belonging to the desert ecosystem showed a very significant increase
trend, and all passed the significance level test of 0.01. The growth rate of NDVI at SPD is
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the slowest (slope = 4.29 × 10−3, p < 0.01), the low value is in 2005, and the high value is in
2018. The NDVI of OSD has the fastest growth rate (slope = 1.59 × 10−2, p < 0.01), the low
value is in 1999, and the high value is in 2020. The slope range of NDVI change at NMD,
FKD, and CLD is 6.97 × 10−3–9.63 × 10−3, p < 0.01 (Figure 7).
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Figure 7. NDVI change trend of desert ecosystem stations.

From the specific value, the NDVI of NMD increased from 0.64 to 0.88, with a growth
rate of 37.34%; the NDVI of SPD increased from 0.14 to 0.24, with a growth rate of 69.21%;
the NDVI of ESD increased from 0.28 to 0.70, with a growth rate of 149.73%; the NDVI of
FKD increased from 0.47 to 0.70, with a growth rate of 48.26%; the NDVI of CLD increased
from 0.09 to 0.30, with a growth rate of 230.25%.

4. Discussion

A large number of achievements have pointed out that climate change and human
activities have a significant impact on vegetation change, and there are differences in
ecosystem types [31–33]. In terms of time scale, ESD, ACA, ASA, and CWA are the four
stations with the fastest increase in NDVI, and the annual average NDVI trend rate is in
the range of 1.05 × 10−2–1.59 × 10−2. At the same time, the two stations with the fastest
decline in NDVI are LCA and CSA, which are located in Shijiazhuang City, Hebei Province,
and Changshu City, Jiangsu Province, respectively. It is very likely that the difference in
NDVI is caused by differences in agricultural farming behavior and crop types.

In terms of space, the NDVI change trend has a large spatial heterogeneity [34]. The
stations with rapid rise are the types of agricultural and forest ecosystems distributed in
the middle and lower reaches of the Yangtze River and the Yellow River, and the desert
stations and agricultural stations in the west and north [35]. This is consistent with the
research results of Song Changchun’s team [36]. The NDVI in the north of China rose
relatively slowly, such as HLA, CBF, NMG, and SPD, while the NDVI in NMD and CLD rose
significantly, far higher than other stations. Since 1998, the national and local governments
have carried out a series of large-scale implementation of ecological construction projects
to improve the desertification process in the region [37,38]. This is consistent with the
research results of Fu Bojie’s team [39,40]. The NDVI in the west of China tends to increase
or decrease slowly, but the NDVI in ACA is increasing significantly, which may be related
to the development of oasis agriculture in Aksu [41]. The NDVI change trend of LSA
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is not obvious. The center and south of China is dominated by forests and agricultural
stations, which are distributed in the middle and lower reaches of the Yangtze River and the
Yellow River. Compared with other regions, NDVI of central and south of China increases
faster, which may be related to the age of forests and the main crops planted in different
regions [42]. This is consistent with the research results of Zhou Guoyi’s team [43]. CSA is
located in the central and eastern regions, so the NDVI for many years shows a downward
trend.

Remote sensing, as the most effective means of monitoring vegetation, is widely used
in the study of terrestrial ecological changes, but there are also uncertainties. For example,
the saturation effect of NDVI on high-cover vegetation can have a certain impact on its
sensitivity when monitoring vegetation changes. In addition, using a buffer to extract
NDVI makes it difficult to ensure the uniformity of ground objects within the pixel, and
the problem of mixed pixels has also had a certain impact on the research. The vegetation
type is regarded as invariant, which inevitably has a certain impact on the research.

5. Conclusions

We analyzed the dynamic change in NDVI based on remote sensing retrieval data
and typical stations. We found that China’s terrestrial ecosystems mainly include for-
est ecosystems, grassland ecosystems, desert ecosystems, and farmland ecosystems. In
2020, the total area of four types of ecosystems accounted for 18.80%, 23.58%, 12.46%, and
31.48% of China’s land area, respectively. In the last 22 years, about 1/3 of China’s regions
(3.04 × 106 km2) had significantly improved vegetation quality, and 10% of the region
(3.54 × 105 km2) had decreased, which indicated that China’s ecological situation is contin-
uously improving. The area with significant decline is mainly divided into two parts: one is
the urban built-up area in the eastern region, and the other is the desert and grassland areas
with poor natural conditions. For CERN stations, there is a large spatial heterogeneity in the
NDVI change trend in the last 22 years. The NDVI of agricultural and forest stations in the
north of China rose relatively slowly, such as HLA (slope = −3.81 × 10−3, p < 0.05) and CBF
(slope = 1.88 × 10−3, p < 0.01), which is mainly limited by the natural climatic conditions
and farming conditions. The NDVI of desert stations NMD and CLD has a significant
upward trend (growth rates of 37.34% and 48.26%). The large-scale implementation of
ecological restoration projects has reversed the process of desertification in the region. Most
of the NDVI in the west of China showed a slow rise or slow decline trend, but the NDVI
change trend of ACA increased significantly (growth rate of 71.64%), which may be related
to the development of oasis agriculture in Aksu. Center and south of China is mostly
dominated by forests and agricultural stations, which are distributed in the middle and
lower reaches of the Yangtze River and the Yellow River. Compared with other regions,
the NDVI of center and south of China rises faster, which is related to the better vegetation
condition in the southern region. The NDVI in the east has shown a downward trend for
many years.
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