Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data
Abstract
:1. Introduction
2. Data and Methods
2.1. InSAR Data Processing
2.2. Post-Seismic Full Time Deformation Estimation
2.3. Poroelastic Rebound Modeling
2.4. Viscoelastic Relaxation Modeling
2.5. Kinematic Afterslip Modeling
3. Results
3.1. Spatiotemporal Characteristics of Post-Seismic Deformation
3.2. Mechanism of Post-Seismic Deformation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Yin, A. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism. Geosphere 2009, 5, 199–214. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Ser. D-Earth Sci. 2003, 46, 356–372. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Zhang, G.; Ma, J.; Gan, W.; Min, W.; Mao, F.; Wan, Q. Active Blocks and Strong Earthquake in the continent of China. Sci. China Ser. D-Earth Sci. 2003, 46, 13–24. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Zhang, Z.; Li, H. Active faults, earthquake hazards and associated geodynamic processes in continental China. Sci. Sin. Terr. 2013, 43, 1607–1620. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Pan, J.; Sun, Z.; Liu, D.; Zhang, J.; Li, C.; Liu, K.; Yun, K.; Gong, Z. Seismogenic Structure and Surface Rupture Characteristics of the of the 2014 Ms 7.3 Yutian Earthquake. Acta Geol. Sin. 2015, 89, 180–194. [Google Scholar]
- Xu, X.; Tan, X.; Yu, G.; Wu, G.; Fang, W.; Chen, J.; Song, H.; Shen, J. Normal- and oblique-slip of the 2008 Yutian earthquake: Evidence for eastward block motion, northern Tibetan Plateau. Tectonophysics 2013, 584, 152–165. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Freymueller, J.T.; Li, Z. Probing Coulomb stress triggering effects for a Mw > 6.0 earthquake sequence from 1997 to 2014 along the periphery of the Bayan Har block on the Tibetan Plateau. Tectonophysics 2017, 694, 249–267. [Google Scholar] [CrossRef]
- Jia, K.; Zhou, S.; Zhuang, J.; Jiang, C. Stress transfer in the western boundary of Bayan Har Block in Tibet Plateau from the 2008 to 2020 Yutian Earthquake sequence in China. Geophys. Res. Lett. 2021, 48, e2021GL094125. [Google Scholar] [CrossRef]
- Elliott, J.R.; Walters, R.J.; England, P.C.; Jackson, J.A.; Li, Z.; Parsons, B. Extension on the Tibetan plateau: Recent normal faulting measured by InSAR and body wave seismology. Geophys. J. Int. 2010, 183, 503–535. [Google Scholar] [CrossRef]
- Furuya, M.; Yasuda, T. The 2008 Yutian normal faulting earthquake (Mw 7.1), NW Tibet: Non-planar fault modeling and implications for the Karakax Fault. Tectonophysics 2011, 511, 125–133. [Google Scholar] [CrossRef]
- Shan, X.; Zhang, G.; Wang, C.; Qu, C.; Song, X.; Zhang, G.; Guo, L. Source characteristics of the Yutian earthquake in 2008 from inversion of the coseismic deformation field mapped by InSAR. J. Asian Earth Sci. 2011, 40, 935–942. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Tan, K.; Lu, X.; Zuo, X. Slip Model of the 2020 Yutian (Northwestern Tibetan Plateau) Earthquake Derived From Joint Inversion of InSAR and Teleseismic Data. Earth Space Sci. 2021, 8, e2020EA001409. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Ding, K.; Xu, C. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet. Remote Sens. 2020, 12, 3012. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Zhao, B.; Li, Q. Normal Faulting Movement During the 2020 Mw 6.4 Yutian Earthquake: A Shallow Rupture in NW Tibet Revealed by Geodetic Measurements. Pure Appl. Geophys. 2021, 178, 1563–1578. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Li, X.; Xu, J.; Yao, W.; Han, L.; Li, T. Detailed mapping of the surface rupture of the 12 February 2014 Yutian Ms 7.3 earthquake, Altyn Tagh fault, Xinjiang, China. Sci. China Earth Sci. 2021, 64, 127–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Chen, Y.; Wang, R. Fast inversion for the rupture process of the 12 February 2014 Yutian Mw 6.9 earthquake: Discussion on the impacts of focal mechanisms on rupture process inversions. Acta Seismol. Sin. 2014, 36, 159–164. [Google Scholar]
- Zhang, H.; Ge, Z. Stepover Rupture of the 2014 Mw 7.0 Yutian, Xinjiang, Earthquake. Bull. Seismol. Soc. Am. 2017, 107, 581–591. [Google Scholar] [CrossRef]
- Liang, H.; Wu, Y.; Chen, C.; Xiong, W. Coseismic displacement and dislocation inversion of 2014 Yutian Ms 7.3 earthquake in Xinjiang. Chin. J. Geophys. 2018, 61, 4817–4826. [Google Scholar]
- Li, X.; Xu, W.; Jónsson, S.; Klinger, Y.; Zhang, G. Source Model of the 2014 Mw 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismol. Res. Lett. 2020, 91, 3161–3170. [Google Scholar] [CrossRef]
- Luo, Y.; Hu, Y.; Tian, Y.; Zhang, J. Seismogenic fault and aftershock characteristics for the 2014 Ms 7.3 Yutian earthquake, Xinjiang. Acta Geol. Sin. 2021, 43, 48–56. [Google Scholar]
- Nur, A.; Mavko, G. Postseismic Viscoelastic Rebound. Science 1974, 183, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Perfettini, H.; Avouac, J.P. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. Solid Earth 2004, 109, B02304. [Google Scholar] [CrossRef]
- Jónsson, S.; Segall, P.; Pedersen, R.; Björnsson, G. Post-earthquake ground movements correlated to pore-pressure transients. Nature 2003, 424, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wu, J.; Wang, W.; Yang, T.; Wang, C. Relocation of the 2014 Ms 7.3 earthquake sequence in Yutian, Xinjiang. Chin. J. Geophys. 2015, 58, 802–808. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Tymofyeyeva, E.; Fialko, Y. Mitigation of atmospheric phase delays in InSAR data, with application to the eastern California shear zone. J. Geophys. Res. Solid Earth 2015, 120, 5952–5963. [Google Scholar] [CrossRef]
- Wang, K.; Fialko, Y. Observations and Modeling of Coseismic and Postseismic Deformation Due To the 2015 Mw7.8 Gorkha (Nepal) Earthquake. J. Geophys. Res. Solid Earth 2018, 123, 761–779. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Morishita, Y.; Lazecky, M.; Wright, T.J.; Weiss, J.R.; Elliott, J.R.; Hooper, A. LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sens. 2020, 12, 424. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Bürgmann, R.; Gong, W.; Shan, X. Relaxation of Tibetan Lower Crust and Afterslip Driven by the 2001 Mw 7.8 Kokoxili, China, Earthquake Constrained by a Decade of Geodetic Measurements. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021314. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, J.; Gan, W.; Yu, H. Coulomb stress interaction among strong earthquakes around the Bayan Har block since the Manyi earthquake in 1997. Chin. J. Geophys. 2011, 54, 1997–2010. [Google Scholar]
- Zhang, C.; Cao, J.; Shi, J. Study the the viscosity of lower crust of Qinghai-Tibet Plateau according to postseismic deformation. Sci. China Ser. D-Earth Sci. 2009, 52, 411–419. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP—A new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef]
- Jónsson, S.; Zebker, H.; Segall, P.; Amelung, F. Fault slip distribution of the 1999 Mw 7.1 Hector Mine, California, earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W. Logarithmic Model Joint Inversion Method for Coseismic and Postseismic Slip: Application to the 2017 Mw 7.3 Sarpol Zahāb Earthquake, Iran. J. Geophys. Res. Solid Earth 2019, 124, 12034–12052. [Google Scholar] [CrossRef]
- Tang, M.; Wang, H.; Li, Y.; Reyi, M.; Kong, X.; Wei, Y.; Shangguang, W.; Wei, B. Relocation of the 2014 Yutian, Xinjiang, Ms 7.3 earthquake sequence and a preliminary study of its seismogenic structure. Chin. J. Geophys. 2016, 59, 2126–2137. [Google Scholar]
- Sadeghi Chorsi, T.; Braunmiller, J.; Deng, F.; Dixon, T.H. Afterslip from the 2020 M 6.5 Monte Cristo Range, Nevada Earthquake. Geophys. Res. Lett. 2022, 49, e2022GL099952. [Google Scholar] [CrossRef]
- Koper, K.D.; Pankow, K.L.; Pechmann, J.C.; Hale, J.M.; Burlacu, R.; Yeck, W.L.; Benz, H.M.; Herrmann, R.B.; Trugman, D.T.; Shearer, P.M. Afterslip Enhanced Aftershock Activity During the 2017 Earthquake Sequence Near Sulphur Peak, Idaho. Geophys. Res. Lett. 2018, 45, 5352–5361. [Google Scholar] [CrossRef]
- Churchill, R.M.; Werner, M.J.; Biggs, J.; Fagereng, Å. Afterslip Moment Scaling and Variability From a Global Compilation of Estimates. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023897. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Brengman, C.M.; Li, S.; Peterson, K.E. Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw 7.3 Darbandikhan, Iran/Iraq earthquake. Earth Planet. Sci. Lett. 2018, 496, 96–107. [Google Scholar] [CrossRef]
- Chevalier, M.-L.; Pan, J.; Li, H.; Sun, Z.; Liu, D.; Pei, J.; Xu, W.; Wu, C. First tectonic-geomorphology study along the Longmu–Gozha Co fault system, Western Tibet. Gondwana Res. 2017, 41, 411–424. [Google Scholar] [CrossRef]
Satellite | Asc/Desc | Track | Number of Images | Time | Method |
---|---|---|---|---|---|
Sentinel-1 | Asc | 165 | 71 | 20141016–20200505 | LiCSBAS |
Desc | 158 | 77 | 20141029–20200617 | ||
COSMO-SkyMed | Asc | – | 4 | 20140219–20140408 (7–55 days) 20140227–20140404 (15–51 days) | DInSAR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Xie, L.; Zhao, L.; Xu, W. Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data. Remote Sens. 2023, 15, 2258. https://doi.org/10.3390/rs15092258
Huang Z, Xie L, Zhao L, Xu W. Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data. Remote Sensing. 2023; 15(9):2258. https://doi.org/10.3390/rs15092258
Chicago/Turabian StyleHuang, Zhanhong, Lei Xie, Lei Zhao, and Wenbin Xu. 2023. "Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data" Remote Sensing 15, no. 9: 2258. https://doi.org/10.3390/rs15092258
APA StyleHuang, Z., Xie, L., Zhao, L., & Xu, W. (2023). Spatiotemporal Distribution of Afterslip following the 2014 Yutian Mw 6.9 Earthquake Using COSMO-SkyMed and Sentinel-1 InSAR Data. Remote Sensing, 15(9), 2258. https://doi.org/10.3390/rs15092258