The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Dataset
3. Methodology
3.1. Population Density and Built Environment Factors
3.2. Regression Analysis
3.3. Dynamic Influence of Built Environment on Human Distribution
4. Results
4.1. Global Static Relationship between Population Distribution and Built Environment
4.2. Local and Dynamic Relationship between Population Density and Built Environment
4.2.1. Temporal Dynamic Relationship between Built Environment and Population Distribution
4.2.2. Spatial Variation Relationship between Built Environment and Population Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, L.; Chen, J.; Zhang, H.; Yang, Z.; Wan, Q.; Ning, L.; Hu, J.; Yu, Q. Improving emergency evacuation planning with mobile phone location data. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 964–980. [Google Scholar] [CrossRef]
- Hossain, M.K.; Meng, Q. A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood. Land Use Policy 2020, 99, 104829. [Google Scholar] [CrossRef]
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2021, 109, 102992. [Google Scholar] [CrossRef]
- Haraguchi, M.; Nishino, A.; Kodaka, A.; Allaire, M.; Lall, U.; Kuei-Hsien, L.; Onda, K.; Tsubouchi, K.; Kohtake, N. Human mobility data and analysis for urban resilience: A systematic review. Environ. Plan. B Urban Anal. City Sci. 2022, 49, 1507–1535. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social sensing: A new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Shaw, S.-L.; Tsou, M.-H.; Ye, X. Editorial: Human dynamics in the mobile and big data era. Int. J. Geogr. Inf. Sci. 2016, 30, 1687–1693. [Google Scholar] [CrossRef]
- Huang, B.; Wang, J. Big spatial data for urban and environmental sustainability. Geo. Spat. Inf. Sci. 2020, 23, 125–140. [Google Scholar] [CrossRef]
- Huang, H.; Yao, X.A.; Krisp, J.M.; Jiang, B. Analytics of location-based big data for smart cities: Opportunities, challenges, and future directions. Comput. Environ. Urban Syst. 2021, 90, 101712. [Google Scholar] [CrossRef]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef]
- Shang, S.; Du, S.; Du, S.; Zhu, S. Estimating building-scale population using multi-source spatial data. Cities 2021, 111, 103002. [Google Scholar] [CrossRef]
- Rubinyi, S.; Blankespoor, B.; Hall, J.W. The utility of built environment geospatial data for high-resolution dasymetric global population modeling. Comput. Environ. Urban Syst. 2021, 86, 101594. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, L.; Xiao, Y.; Lu, Y. Investigating the spatiotemporal pattern between the built environment and urban vibrancy using big data in Shenzhen, China. Comput. Environ. Urban Syst. 2022, 95, 101827. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Jia, T.; Zhou, L.; Hijazi, I.H. The six dimensions of built environment on urban vitality: Fusion evidence from multi-source data. Cities 2022, 121, 103482. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Yu, D.; Qi, J.; Li, S. Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China. Land Use Policy 2022, 119, 106162. [Google Scholar] [CrossRef]
- Chen, J.; Pei, T.; Shaw, S.-L.; Lu, F.; Li, M.; Cheng, S.; Liu, X.; Zhang, H. Fine-grained prediction of urban population using mobile phone location data. Int. J. Geogr. Inf. Sci. 2018, 32, 1770–1786. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, T.; Du, Y.; Pei, T.; Yi, J.; Peng, H. Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records. Trans. GIS 2018, 22, 494–513. [Google Scholar] [CrossRef]
- Zhang, G.; Rui, X.; Poslad, S.; Song, X.; Fan, Y.; Wu, B. A method for the estimation of finely grained temporal spatial human population density distributions based on cell phone call detail records. Remote Sens. 2020, 12, 2572. [Google Scholar] [CrossRef]
- Li, M.; Gao, S.; Lu, F.; Liu, K.; Zhang, H.; Tu, W. Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks. Int. J. Geogr. Inf. Sci. 2021, 35, 2489–2516. [Google Scholar] [CrossRef]
- Bergroth, C.; Järv, O.; Tenkanen, H.; Manninen, M.; Toivonen, T. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Sci. Data 2022, 9, 39. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of American Cities; Vintage Book Company: New York, NY, USA, 1961. [Google Scholar]
- Tu, W.; Zhu, T.; Xia, J.; Zhou, Y.; Lai, Y.; Jiang, J.; Li, Q. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Chen, T.; Hui, E.C.M.; Wu, J.; Lang, W.; Li, X. Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data. Habitat Int. 2019, 89, 102005. [Google Scholar] [CrossRef]
- Huang, B.; Zhou, Y.; Li, Z.; Song, Y.; Cai, J.; Tu, W. Evaluating and characterizing urban vibrancy using spatial big data: Shanghai as a case study. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 1543–1559. [Google Scholar] [CrossRef]
- Wu, C.; Ye, X.; Ren, F.; Du, Q. Check-in behaviour and spatio-temporal vibrancy: An exploratory analysis in Shenzhen, China. Cities 2018, 77, 104–116. [Google Scholar] [CrossRef]
- Jia, C.; Du, Y.; Wang, S.; Bai, T.; Fei, T. Measuring the vibrancy of urban neighborhoods using mobile phone data with an improved PageRank algorithm. Trans. GIS 2019, 23, 241–258. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data. Cities 2019, 95, 102389. [Google Scholar] [CrossRef]
- Kang, C.; Fan, D.; Jiao, H. Validating activity, time, and space diversity as essential components of urban vitality. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1180–1197. [Google Scholar] [CrossRef]
- Kim, Y.-L. Data-driven approach to characterize urban vitality: How spatiotemporal context dynamically defines Seoul’s nighttime. Int. J. Geogr. Inf. Sci. 2020, 34, 1235–1256. [Google Scholar] [CrossRef]
- Pan, Y.; Zeng, W.; Guan, Q.; Yao, Y.; Liang, X.; Yue, H.; Zhai, Y.; Wang, J. Spatiotemporal dynamics and the contributing factors of residential vacancy at a fine scale: A perspective from municipal water consumption. Cities 2020, 103, 102745. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, L.; Zhang, B.; Xu, G.; Liu, J. Understanding the pattern and mechanism of spatial concentration of urban land use, population and economic activities: A case study in Wuhan, China. Geo. Spat. Inf. Sci. 2021, 24, 678–694. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B.; Li, R.; Wang, J. Characterizing the complex influence of the urban built environment on the dynamic population distribution of Shenzhen, China, using geographically and temporally weighted regression. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1445–1462. [Google Scholar] [CrossRef]
- Li, M.; Tu, W.; Lu, F. Sensing the nighttime economy–housing imbalance from a mobile phone data perspective: A case study in shanghai. Remote Sens. 2022, 14, 2738. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yuan, Y.; Li, G. Spatiotemporal distribution characteristics and mechanism analysis of urban population density: A case of Xi’an, Shaanxi, China. Cities 2019, 86, 62–70. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; Association for Computing Machinery: Beijing, China, 2012; pp. 186–194. [Google Scholar] [CrossRef]
- Liu, X.; Long, Y. Automated identification and characterization of parcels with OpenStreetMap and points of interest. Environ. Plan. B Plan. Des. 2016, 43, 341–360. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Xia, C.; Yeh, A.; Zhang, A. Analyzing spatial relationships between urban land use intensity and urban vitality at street block level: A case study of five Chinese megacities. Lands Urban Plan. 2020, 193, 103669. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Z.; Xu, Y.; Yin, L.; Li, J.; Lu, S. Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data. J. Transp. Geogr. 2019, 78, 29–40. [Google Scholar] [CrossRef]
Name | Description | |
---|---|---|
Transportation | Road interaction () | The number of toad interaction within the street block. |
Road density () | The density of road within the street block, calculated by , represents the length of road lines within the street block, and the area of the street block. | |
Bus stops density () | The ratio of total number of bus stops to the area of the street block. | |
Subway distance (SubwayD) | The distance between center of street block to the nearest subway station. | |
Location | Location () | The distance of each street block to the urban center. |
Building footprint | Building coverage ratio () | The ratio of total building area to the area of street block , denotes the total of building area. |
Floor area ratio (FAR) | The ratio of total floor area to the area of street block , denotes the total of floor area within the street block. | |
Green | NDVI (NDVI) | The average of NDVI within the street block. |
Land use | POI density (POID) | The ratio of total number of POI to area of street block. |
Commercial POI density (CPOI) | The ratio of total number of Commercial POI to area of street block. | |
Residential POI density (RPOI) | The ratio of total number of Residential POI to area of street block. | |
Industrial POI density (IPOI) | The ratio of total number of Industrial POI to area of street block. | |
Public POI density (PPOI) | The ratio of total number of Public POI to area of street block. | |
POI mixed (POIM) | The entropy of different type of POI within the street block. , represent the proportion of each type of POI. |
Independent Variables | Workday | Weekend | ||||
---|---|---|---|---|---|---|
Coefficient | t-Statistic | p-Value | Coefficient | t-Statistic | p-Value | |
Road interaction (RI) | 0.215 | 7.245 | 0.000 *** | 0.171 | 6.322 | 0.000 *** |
Road density (RD) | 0.011 | 0.336 | 0.737 | 0.006 | 0.183 | 0.855 |
Bus stops density (BusD) | 0.015 | 0.617 | 0.538 | 0.003 | 0.132 | 0.895 |
Distance to subway station (Subway) | −0.047 | −1.660 | 0.047 * | −0.082 | −3.202 | 0.001 *** |
Location (L) | −0.033 | −0.885 | 0.377 | 0.010 | 0.306 | 0.760 |
Building coverage rate (BCR) | −0.130 | −3.336 | 0.001 *** | −0.136 | −3.818 | 0.000 *** |
Floor area rate (FAR) | 0.245 | 5.896 | 0.000 *** | 0.332 | 8.777 | 0.000 *** |
NDVI | −0.102 | −3.550 | 0.000 *** | −0.123 | −4.720 | 0.000 *** |
Commercial POI (CPOI) | 0.174 | 4.671 | 0.000 *** | 0.296 | 8.730 | 0.000 *** |
Residential POI (RPOI) | 0.088 | 2.294 | 0.022 ** | 0.136 | 3.895 | 0.000 *** |
Industrial POI (IPOI) | 0.062 | 2.272 | 0.023 ** | −0.123 | −4.945 | 0.000 *** |
Public POI (PPOI) | 0.223 | 6.086 | 0.000 *** | 0.146 | 4.370 | 0.000 *** |
POI mixture (POIM) | 0.017 | 0.553 | 0.581 | 0.032 | 1.129 | 0.259 |
AIC | 1835.402 | 1729.07 | ||||
R2 | 0.528 | 0.609 | ||||
Adjusted R2 | 0.521 | 0.603 |
Independent Variable | Minimum | Mean | Median | Maximum | Std |
---|---|---|---|---|---|
Subway | −0.125 | −0.122 | −0.125 | −0.110 | 0.002 |
BCR | −0.147 | −0.138 | −0.126 | −0.129 | 0.004 |
FAR | 0.157 | 0.174 | 0.165 | 0.186 | 0.006 |
NDVI | −0.149 | −0.135 | −0.132 | −0.113 | 0.008 |
CPOI | 0.031 | 0.253 | 0.255 | 0.515 | 0.104 |
RPOI | 0.068 | 0.115 | 0.122 | 0.185 | 0.027 |
IPOI | −0.128 | −0.042 | −0.048 | −0.025 | 0.02 |
PPOI | 0.191 | 0.230 | 0.223 | 0.276 | 0.037 |
AIC | 1688.848 | ||||
R2 | 0.648 | ||||
Adjusted R2 | 0.610 |
Independent Variable | Minimum | Mean | Median | Maximum | Std |
---|---|---|---|---|---|
Subway | −0.104 | −0.093 | −0.093 | −0.080 | 0.007 |
BCR | −0.173 | −0.166 | −0.159 | −0.158 | 0.003 |
FAR | 0.244 | 0.258 | 0.252 | 0.269 | 0.005 |
NDVI | −0.529 | −0.182 | −0.190 | −0.022 | 0.098 |
CPOI | −0.028 | 0.386 | 0.355 | 0.740 | 0.174 |
RPOI | −0.018 | 0.216 | 0.209 | 0.497 | 0.119 |
IPOI | −0.179 | −0.171 | −0.172 | −0.162 | 0.004 |
PPOI | 0.137 | 0.149 | 0.150 | 0.157 | 0.006 |
AIC | 1496.809 | ||||
R2 | 0.748 | ||||
Adjusted R2 | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhao, Z.; Shi, C.; Luo, L.; Tu, W. The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study. Remote Sens. 2023, 15, 2257. https://doi.org/10.3390/rs15092257
Yang X, Zhao Z, Shi C, Luo L, Tu W. The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study. Remote Sensing. 2023; 15(9):2257. https://doi.org/10.3390/rs15092257
Chicago/Turabian StyleYang, Xiping, Zhiyuan Zhao, Chaoyang Shi, Lin Luo, and Wei Tu. 2023. "The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study" Remote Sensing 15, no. 9: 2257. https://doi.org/10.3390/rs15092257
APA StyleYang, X., Zhao, Z., Shi, C., Luo, L., & Tu, W. (2023). The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study. Remote Sensing, 15(9), 2257. https://doi.org/10.3390/rs15092257