A Phase Difference Measurement Method for Integrated Optical Interferometric Imagers
Abstract
1. Introduction
2. Materials and Methods
2.1. Complete Representation of Interference Fringes
2.2. Principle of Phase Difference Measurement
2.3. Phase Difference Measurement Simulation
3. Results
3.1. Amplitude-Division Interference Experiment
3.1.1. Experimental Setup
3.1.2. Experimental Results
3.2. Wavefront-Division Interference Experiment
3.2.1. Experimental Setup
3.2.2. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Müller, A.; Keppler, M.; Henning, T.; Samland, M.; Chauvin, G.; Beust, H.; Maire, A.-L.; Molaverdikhani, K.; van Boekel, R.; Benisty, M. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk. Astron. Astrophys. 2018, 617, L2. [Google Scholar] [CrossRef]
- Keppler, M.; Benisty, M.; Müller, A.; Henning, T.; Van Boekel, R.; Cantalloube, F.; Ginski, C.; Van Holstein, R.; Maire, A.-L.; Pohl, A. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 2018, 617, A44. [Google Scholar] [CrossRef][Green Version]
- Klarmann, L.; Benisty, M.; Brandner, W.; van Boekel, R.; Henning, T.; Mérand, A.; Sallum, S.; Tuthill, P.G. Star and planet formation with the new generation VLTI and CHARA beam combiners. In Proceedings of the Optical and Infrared Interferometry and Imaging VII, Online, 14–18 December 2020. [Google Scholar] [CrossRef]
- Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.; Ireland, M.J.; Monnier, J.D.; Kraus, S.; Isella, A.; Minardi, S.; Petrov, R.; ten Brummelaar, T.; et al. Status of the Planet Formation Imager (PFI) concept. In Proceedings of the Optical and Infrared Interferometry and Imaging V, Edinburgh, UK, 27 June–1 July 2016. [Google Scholar] [CrossRef][Green Version]
- Shao, M.; Unwin, S.; Boden, A.; Van Buren, D.; Kulkarni, S. Space Interferometry Mission; Springer: Dordrecht, The Netherlands, 1997; pp. 267–278. [Google Scholar] [CrossRef]
- Kendrick, R.L.; Duncan, A.; Ogden, C.; Wilm, J.; Stubbs, D.M.; Thurman, S.T.; Su, T.; Scott, R.P.; Yoo, S. Flat-Panel Space Based Space Surveillance Sensor. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 10–13 September 2013; p. 45. [Google Scholar]
- Labeyrie, A.; Lipson, S.G.; Nisenson, P. An Introduction to Optical Stellar Interferometry; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Gao, W.P.; Wang, X.R.; Ma, L.; Yuan, Y.; Guo, D.F. Quantitative analysis of segmented planar imaging quality based on hierarchical multistage sampling lens array. Opt. Express 2019, 27, 7955–7967. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wen, D.; Song, Z.; Jiang, T. System design of an optical interferometer based on compressive sensing: An update. Opt. Express 2020, 28, 19349–19361. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Ge, B.; Li, Y.; Yue, Y.; Chen, F.; Sun, S. System design for a “checkerboard” imager. Appl. Opt. 2018, 57, 10218–10223. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhang, X.; Liu, X.; Meng, H.; Xu, M. Structure Design and Image Reconstruction of Hexagonal-Array Photonics Integrated Interference Imaging System. IEEE Access 2020, 8, 139396–139403. [Google Scholar] [CrossRef]
- Liu, G.; Wen, D.; Song, Z.; Li, Z.; Zhang, W.; Wei, X. Optimized design of an emerging optical imager using compressive sensing. Opt. Laser Technol. 2019, 110, 158–164. [Google Scholar] [CrossRef]
- Ding, C.; Zhang, X.; Liu, X.; Meng, H.; Xu, M. High-resolution reconstruction method of segmented planar imaging based on compressed sensing. In Proceedings of the Advanced Optical Imaging Technologies II, Hangzhou, China, 21–23 October 2019. [Google Scholar] [CrossRef]
- Chen, T.; Tian, M.; Zeng, X.; Zhang, Z. Image Reconstruction of Photonics Integrated Interference Imaging System: Stablized CLEAN methods. In Proceedings of the 2021 International Conference of Optical Imaging and Measurement (ICOIM), Xi’an, China, 27–29 August 2021; pp. 104–108. [Google Scholar] [CrossRef]
- Chen, T.; Zeng, X.; Zhang, Z.; Zhang, F.; Bai, Y.; Zhang, X. REM: A simplified revised entropy image reconstruction for photonics integrated interference imaging system. Opt. Commun. 2021, 501, 127341. [Google Scholar] [CrossRef]
- Su, T.; Scott, R.P.; Ogden, C.; Thurman, S.T.; Kendrick, R.L.; Duncan, A.; Yu, R.; Yoo, S.J.B. Experimental demonstration of interferometric imaging using photonic integrated circuits. Opt. Express 2017, 25, 12653–12665. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; et al. SPIDER: Next Generation Chip Scale Imaging Sensor Update. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, HI, USA, 20–23 September 2016. [Google Scholar]
- Badham, K.; Kendrick, R.; Wuchenich, D.; Ogden, C.; Chriqui, G.; Duncan, A.; Thurman, S.; Yoo, S.; Su, T.; Lai, W.; et al. Photonic integrated circuit-based imaging system for SPIDER. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017. [Google Scholar] [CrossRef]
- Chen, H.; On, M.B.; Yun-Jhu-Lee, Y.J.; Zhang, L.; Proietti, R.; Yoo, S. Photonic Interferometric Imager with monolithic silicon CMOS photonic integrated circuits. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022. [Google Scholar] [CrossRef]
- Ogden, C.E.; Chriqui, G.; Feller, G.S. Fiber-Coupled Phased Array of Photonic Integrated Circuit Imagers. US Patent 10,663,282, 26 May 2020. [Google Scholar]
- Froehly, C. Coherence and interferometry through optical fibers. In Proceedings of the Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths, Garching, Germany, 1 January 1981; pp. 285–293. [Google Scholar]
- Brummelaar, T.A.; McAlister, H.A. Optical and Infrared Interferometers; Springer: Dordrecht, The Netherlands. [CrossRef]
- Garcia, E.V.; Muterspaugh, M.W.; Belle, G.V.; Monnier, J.D.; Stassun, K.G.; Ghasempour, A.; Clark, J.H.; Zavala, R.T.; Benson, J.A.; Hutter, D.J.; et al. Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer. Publ. Astron. Soc. Pac. 2016, 128, 055004. [Google Scholar] [CrossRef][Green Version]
- Vievard, S.; Huby, E.; Lacour, S.; Barjot, K.; Martin, G.; Cvetojevic, N.; Deo, V.; Guyon, O.; Lozi, J.; Kotani, T.; et al. FIRST, a pupil-remapping fiber interferometer at the Subaru Telescope: On-sky results. In Proceedings of the Optical and Infrared Interferometry and Imaging VII, Online, 14–18 December 2020. [Google Scholar] [CrossRef]
- Abuter, R.; Accardo, M.; Amorim, A.; Anugu, N.; Ávila, G.; Azouaoui, N.; Benisty, M.; Berger, J.P.; Blind, N.; Bonnet, H.; et al. First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer. Astron. Astrophys. 2017, 602, A94. [Google Scholar] [CrossRef]
- Lehmann, L.; Delage, L.; Grossard, L.; Reynaud, F.; Golden, S.; Woods, C.; Webster, L.; Sturmann, J.; Brummelaar, T.T. Environmental characterisation and stabilisation of a 2×200-meter outdoor fibre interferometer at the CHARA Array. Exp. Astron. 2019, 47, 303–312. [Google Scholar] [CrossRef]
- Goodman, J.W. Statistical Optics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Takeda, M. Optical metrology: Methodological analogy and duality revisited. In Proceedings of the Tribute to James C. Wyant: The Extraordinaire in Optical Metrology and Optics Education, San Diego, CA, USA, 2–3 August 2021; pp. 134–141. [Google Scholar] [CrossRef]
- Lawson, P.R. (Ed.) Principles of Long Baseline Stellar Interferometry; NASA-JPL: Pasadena, CA, USA, 2000. [Google Scholar]
- Pedretti, E.; Thureau, N.D.; Wilson, E.; Traub, W.A.; Lacasse, M.G. Fringe Tracking at the IOTA Interferometer. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Glasgow, UK, 21–25 June 2004. [Google Scholar] [CrossRef][Green Version]
- Thureau, N.D.; Boysen, R.C.; Buscher, D.F.; Haniff, C.A.; Young, J.S. Fringe envelope tracking at COAST. In Proceedings of the SPIE 4838, Interferometry for Optical Astronomy II, Waikoloa, HI, USA, 21 February 2003; pp. 956–963. [Google Scholar] [CrossRef]
- Creath, K. V Phase-Measurement Interferometry Techniques. In Progress in Optics; Elsevier: Amsterdam, The Netherlands, 1988; Volume 26. [Google Scholar] [CrossRef]
- Lawson, P.R. Group-delay tracking in optical stellar interferometry with the fast Fourier transform. JOSA A 1995, 12, 366–374. [Google Scholar] [CrossRef]
- Guan, H.; Ma, Y.; Shi, R.; Zhu, X.; Younce, R.; Chen, Y.; Roman, J.; Ophir, N.; Liu, Y.; Ding, R.; et al. Compact and low loss 90° optical hybrid on a silicon-on-insulator platform. Opt. Express 2017, 25, 28957–28968. [Google Scholar] [CrossRef][Green Version]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chen, J.; Ge, B.; Yu, Q. Influence of measurement errors of the complex coherence factor on reconstructed image quality of integrated optical interferometric imagers. Opt. Eng. 2022, 61, 105108. [Google Scholar] [CrossRef]
- Serrano-García, D.-I.; Toto-Arellano, N.-I.; Martínez-García, A.; Rayas-Álvarez, J.-A.; Rodriguez-Zurita, G.; Montes-Pérez, A.J.O.E. Adjustable-window grating interferometer based on a Mach-Zehnder configuration for phase profile measurements of transparent samples. Opt. Eng. 2012, 51, 055601. [Google Scholar] [CrossRef][Green Version]
- Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 1973, 9, 919–933. [Google Scholar] [CrossRef][Green Version]
- Okamoto, K. Fundamentals of Optical Waveguides; Academic Press: Burlington, VT, USA, 2006. [Google Scholar]
- Vincent, C.; Perrin, G.; Boccas, M. Minimizing fiber dispersion effects in double Fourier stellar interferometers. In Proceedings of the SPIE’s Symposium on Oe/Aerospace Sensing & Dual Use Photonics, Orlando, FL, USA, 14 June 1995. [Google Scholar] [CrossRef]
- Vergnole, S.; Delage, L.; Reynaud, F. Accurate measurements of differential chromatic dispersion and contrasts in an hectometric silica fibre interferometer in the frame of ′OHANA project. Opt. Commun. 2004, 232, 31–43. [Google Scholar] [CrossRef]
- Saif, B.; Greenfield, P.; North-Morris, M.; Bluth, M.; Feinberg, L.; Wyant, J.; Keski-Kuha, R. Sub-picometer dynamic measurements of a diffuse surface. Appl. Opt. 2019, 58, 3156–3165. [Google Scholar] [CrossRef] [PubMed]
Data Type | SNR | ||||
---|---|---|---|---|---|
High SNR | 0.316 nW | 0.326 nW | 0.91 | 13.4 pW | 3.8 |
Low SNR | 0.135 nW | 0.138 nW | 0.91 | 5.7 pW | 1.6 |
Data Type | SNR | ||||
---|---|---|---|---|---|
High SNR | 0.276 nW | 0.316 nW | 0.46 | 6.2 pW | 1.8 |
Low SNR | 0.260 nW | 0.280 nW | 0.46 | 5.7 pW | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, Q.; Ge, B.; Zhang, C.; He, Y.; Sun, S. A Phase Difference Measurement Method for Integrated Optical Interferometric Imagers. Remote Sens. 2023, 15, 2194. https://doi.org/10.3390/rs15082194
Chen J, Yu Q, Ge B, Zhang C, He Y, Sun S. A Phase Difference Measurement Method for Integrated Optical Interferometric Imagers. Remote Sensing. 2023; 15(8):2194. https://doi.org/10.3390/rs15082194
Chicago/Turabian StyleChen, Jialiang, Qinghua Yu, Ben Ge, Chuang Zhang, Yan He, and Shengli Sun. 2023. "A Phase Difference Measurement Method for Integrated Optical Interferometric Imagers" Remote Sensing 15, no. 8: 2194. https://doi.org/10.3390/rs15082194
APA StyleChen, J., Yu, Q., Ge, B., Zhang, C., He, Y., & Sun, S. (2023). A Phase Difference Measurement Method for Integrated Optical Interferometric Imagers. Remote Sensing, 15(8), 2194. https://doi.org/10.3390/rs15082194