Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Corn Residue Samples
- (1)
- Field measurements
- (2)
- Google Earth collection
2.2.2. Soil Data
2.2.3. Remote Sensing Images
2.3. Methods
2.3.1. Spectral Indices and Textural Features
- (1)
- Spectral indices
- (2)
- Textural features
2.3.2. CRC Estimating Models
- (1)
- Multiple Linear Regression model
- (2)
- Random forest regression model
2.3.3. Soil Texture Zoning
2.3.4. OTSU Threshold Segmentation for CRC Sampling
2.3.5. Validation of Residue Cover Estimation
3. Results and Analysis
3.1. Collected CRC Samples Using the OSTU Method
3.2. Classified Result of Corn Planted Area
3.3. Optimization of Spectral Indices and Textural Features
3.4. Comparison of Multiple Linear Regression and Random Forest
3.5. Contribution of Soil Texture Zoning
3.6. CRC Mapping and Change Monitoring
4. Discussion
4.1. Feasibility of the CRC Estimation Model
4.2. Factors Affecting CRC Estimation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Gerasimova, M. Chinese Soil Taxonomy: Between the American and the International Classification Systems. Eurasian Soil Sci. 2010, 43, 945–949. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, W.; Pan, C.; Qiu, G.; Xu, S.; Liu, S. Study on the Influencing Factors of Farmers’ Adoption of Conservation Tillage Technology in Black Soil Region in China: A Logistic-ISM Model Approach. Int. J. Environ. Res. Public Health 2022, 19, 7762. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, Z.; Zhang, B.; Song, K.; Li, X.; Li, J.; Li, F.; Duan, H. Spatial Distribution of Soil Organic Carbon and Analysis of Related Factors in Croplands of the Black Soil Region, Northeast China. Agric. Ecosyst. Environ. 2006, 113, 73–81. [Google Scholar] [CrossRef]
- Najafi, P.; Feizizadeh, B.; Navid, H. A Comparative Approach of Fuzzy Object Based Image Analysis and Machine Learning Techniques Which Are Applied to Crop Residue Cover Mapping by Using Sentinel-2 Satellite and UAV Imagery. Remote Sens. 2021, 13, 937. [Google Scholar] [CrossRef]
- Holland, J.M. The Environmental Consequences of Adopting Conservation Tillage in Europe: Reviewing the Evidence. Agric. Ecosyst. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/conservation-agriculture/en/ (accessed on 2 August 2022).
- Baritz, R.; Wiese-Rozanov, L.; Verbeke, I.; Vargas, R. Voluntary Guidelines for Sustainable Soil Management: Global Action for Healthy Soils. In International Yearbook of Soil Law and Policy; Springer: Berlin/Heidelberg, Germany, 2018; pp. 17–36. ISBN 978-3-319-68884-8. [Google Scholar]
- Gao, L.; Zhang, C.; Yun, W.; Ji, W.; Ma, J.; Wang, H.; Li, C.; Zhu, D. Mapping Crop Residue Cover Using Adjust Normalized Difference Residue Index Based on Sentinel-2 MSI Data. Soil Tillage Res. 2022, 220, 105374. [Google Scholar] [CrossRef]
- Aase, J.K.; Tanaka, D.L. Reflectances from Four Wheat Residue Cover Densities as Influenced by Three Soil Backgrounds. Agron. J. 1991, 83, 753–757. [Google Scholar] [CrossRef]
- Nair, M.; Bherwani, H.; Kumar, S.; Gulia, S.; Goyal, S.; Kumar, R. Assessment of Contribution of Agricultural Residue Burning on Air Quality of Delhi Using Remote Sensing and Modelling Tools. Atmos. Environ. 2020, 230, 117504. [Google Scholar] [CrossRef]
- Rana, M.; Mittal, S.K.; Beig, G.; Rana, P. The Impact of Crop Residue Burning (CRB) on the Diurnal and Seasonal Variability of the Ozone and PM Levels at a Semi-Urban Site in the North-Western Indo-Gangetic Plain. J. Earth Syst. Sci. 2019, 128, 166. [Google Scholar] [CrossRef]
- Daughtry, C.; Hunt, E.R.; Doraiswamy, C.; McMurtrey, J.E. Remote Sensing the Spatial Distribution of Crop Residues. Agron. J. 2005, 97, 864–871. [Google Scholar] [CrossRef]
- Sun, H.; Wang, E.; Li, X.; Cui, X.; Guo, J.; Dong, R. Potential Biomethane Production from Crop Residues in China: Contributions to Carbon Neutrality. Renew. Sustain. Energy Rev. 2021, 148, 111360. [Google Scholar] [CrossRef]
- Tao, W.; Dong, Y.; Su, W.; Li, J.; Xuan, F.; Huang, J.; Yang, J.; Li, X.; Zeng, Y.; Li, B. Mapping the Corn Residue-Covered Types Using Multi-Scale Feature Fusion and Supervised Learning Method by Chinese GF-2 PMS Image. Front. Plant Sci. 2022, 13, 901042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Q.; Meng, J.; Wu, B. Review of Crop Residue Fractional Cover Monitoring with Remote Sensing. Spectrosc. Spectr. Anal. 2011, 31, 3200–3205. [Google Scholar]
- Pacheco, A.; McNairn, H. Evaluating Multispectral Remote Sensing and Spectral Unmixing Analysis for Crop Residue Mapping. Remote Sens. Environ. 2010, 114, 2219–2228. [Google Scholar] [CrossRef]
- Zhou, D.; Li, M.; Li, Y.; Qi, J.; Liu, K.; Cong, X.; Tian, X. Detection of Ground Straw Coverage under Conservation Tillage Based on Deep Learning. Comput. Electron. Agric. 2020, 172, 105369. [Google Scholar] [CrossRef]
- Najafi, P.; Navid, H.; Feizizadeh, B.; Eskandari, I. Object-Based Satellite Image Analysis Applied for Crop Residue Estimating Using Landsat OLI Imagery. Int. J. Remote Sens. 2018, 39, 6117–6136. [Google Scholar] [CrossRef]
- Nagler, P.L.; Daughtry, C.S.T.; Goward, S.N. Plant Litter and Soil Reflectance. Remote Sens. Environ. 2000, 71, 207–215. [Google Scholar] [CrossRef]
- Daughtry, C. Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Quemada, M.; Menacho, E. Soil Respiration 1 Year after Sewage Sludge Application. Biol. Fertil. Soils 2001, 33, 344–346. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q.; Dong, X.; Xu, K.; Zhou, C. Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study. Remote Sens. 2019, 11, 807. [Google Scholar] [CrossRef]
- Xiang, X.; Du, J.; Jacinthe, P.-A.; Zhao, B.; Zhou, H.; Liu, H.; Song, K. Integration of Tillage Indices and Textural Features of Sentinel-2A Multispectral Images for Maize Residue Cover Estimation. Soil Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Wang, Z.; Xie, Q.; Wang, Y.; Liu, L.; Hall, C.C. A Comparison of Estimating Crop Residue Cover from Sentinel-2 Data Using Empirical Regressions and Machine Learning Methods. Remote Sens. 2020, 12, 1470. [Google Scholar] [CrossRef]
- Yue, J.; Tian, Q. Estimating Fractional Cover of Crop, Crop Residue, and Soil in Cropland Using Broadband Remote Sensing Data and Machine Learning. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102089. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, Q.; Deng, S.; Li, X.; Hu, X.; Chen, R.; Shao, G.; Yang, H.; Yang, G. Estimation of Crop Residue Cover in Rice Paddies by a Dynamic-Quadripartite Pixel Model Based on Sentinel-2A Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102645. [Google Scholar] [CrossRef]
- Tao, W.; Xie, Z.; Zhang, Y.; Li, J.; Xuan, F.; Huang, J.; Li, X.; Su, W.; Yin, D. Corn Residue Covered Area Mapping with a Deep Learning Method Using Chinese GF-1 B/D High Resolution Remote Sensing Images. Remote Sens. 2021, 13, 2903. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; Yingli, H.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Liu, W.; Dong, J.; Du, G.; Zhang, G.; Hao, Z.; You, N.; Zhao, G.; Flynn, K.C.; Yang, T.; Zhou, Y. Biophysical Effects of Paddy Rice Expansion on Land Surface Temperature in Northeastern Asia. Agric. For. Meteorol. 2022, 315, 108820. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Patriarca, C.; Picard, N.; Sparrow, B.; Abraham, E.M.; et al. The Extent of Forest in Dryland Biomes. Science 2017, 356, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical Cross Sensor Comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ Top of Atmosphere Spectral Characteristics over the Conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Beeson, P.C.; Daughtry, C.S.T.; Wallander, S.A. Estimates of Conservation Tillage Practices Using Landsat Archive. Remote Sens. 2020, 12, 2665. [Google Scholar] [CrossRef]
- McNairn, H.; Protz, R. Mapping Corn Residue Cover on Agricultural Fields in Oxford County, Ontario, Using Thematic Mapper. Can. J. Remote Sens. 1993, 19, 152–159. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.; Heilman, P.; Bieden-bender, S.; Moran, S.; Goodrich, D.; Weltz, M. RANGES Improves Satellite-Based Information and Land Cover Assessments in Southwest United States. Eos Trans. Am. Geophys. Union 2002, 83, 601–606. [Google Scholar] [CrossRef]
- Sullivan, D.G.; Truman, C.; Schomberg, H.; Endale, D.; Strickland, T. Evaluating Techniques for Determining Tillage Regime in the Southeastern Coastal Plain and Piedmont. Agron. J. 2006, 98, 1236–1246. [Google Scholar] [CrossRef]
- Gelder, B.K.; Kaleita, A.L.; Cruse, R.M. Estimating Mean Field Residue Cover on Midwestern Soils Using Satellite Imagery. Agron. J. 2009, 101, 635–643. [Google Scholar] [CrossRef]
- Haralick, R.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef]
- Barber, D.; LeDrew, E. SAR Sea Ice Discrimination Using Texture Statistics: A Multivariate Approach. Photogramm. Eng. Remote Sens. 1991, 57, 385–395. [Google Scholar]
- Soh, L.-K.; Tsatsoulis, C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Su, W.; Zhang, C.; Yang, J.; Wu, H.; Deng, L.; Ou, W.; Yue, A.; Chen, M. Analysis of Wavelet Packet and Statistical Textures for Object-Oriented Classification of Forest-Agriculture Ecotones Using SPOT 5 Imagery. Int. J. Remote Sens. 2012, 33, 3557–3579. [Google Scholar] [CrossRef]
- Wood, E.M.; Pidgeon, A.M.; Radeloff, V.C.; Keuler, N.S. Image Texture as a Remotely Sensed Measure of Vegetation Structure. Remote Sens. Environ. 2012, 121, 516–526. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.; Suppiah, I.; Hashim, A. Textural and Local Spatial Statistics for the Object-Oriented Classification of Urban Areas Using High Resolution Imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Olson, K.; White, R.; Sindelar, B. Response of Vegetation of the Northern Great Plains to Precipitation Amount and Grazing Intensity. J. Range Manag. 1985, 38, 357–361. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High Density Biomass Estimation for Wetland Vegetation Using WorldView-2 Imagery and Random Forest Regression Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Liu, Z.; Wan, W.; Huang, J.; Wang, J.; Zheng, M. Estimation of maize residue cover on the basis of SAR and optical remote sensing image. Natl. Remote Sens. Bull. 2021, 25, 1308–1323. [Google Scholar]
- Jin, X.; Xu, X.; Song, X.; Li, Z.; Wang, J.; Guo, W. Estimation of Leaf Water Content in Winter Wheat Using Grey Relational Analysis–Partial Least Squares Modeling with Hyperspectral Data. Agron. J. 2013, 105, 1385–1392. [Google Scholar] [CrossRef]
- Xuan, F.; Dong, Y.; Li, J.; Li, X.; Su, W.; Huang, X.; Huang, J.; Xie, Z.; Li, Z.; Liu, H.; et al. Mapping Crop Type in Northeast China during 2013–2021 Using Automatic Sampling and Tile-Based Image Classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103178. [Google Scholar] [CrossRef]
- Berberoglu, S.; Lloyd, C.D.; Atkinson, P.M.; Curran, P.J. The Integration of Spectral and Textural Information Using Neural Networks for Land Cover Mapping in the Mediterranean. Comput. Geosci. 2000, 26, 385–396. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Zhao, Z.; Zhao, J.; Zhao, Q.; Wang, F.; Wang, H. A Comparison of Three Methods for Estimating the LAI of Black Locust (Robinia pseudoacacia L.) Plantations on the Loess Plateau, China. Int. J. Remote Sens. 2014, 35, 171–188. [Google Scholar] [CrossRef]
- Jin, X.; Ma, J.; Wen, Z.; Song, K. Estimation of Maize Residue Cover Using Landsat-8 OLI Image Spectral Information and Textural Features. Remote Sens. 2015, 7, 14559–14575. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, B.; Fang, H.; Wu, H.; Yang, H. Evaluating Soil Erosion by Introducing Crop Residue Cover and Anthropogenic Disturbance Intensity into Cropland C-Factor Calculation: Novel Estimations from a Cropland-Dominant Region of Northeast China. Soil Tillage Res. 2022, 219, 105343. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiang, H.; McHugh, A.D.; He, J.; Li, H.; Wang, Q.; Lu, Z. Effect of Conservation Farming Practices on Soil Organic Matter and Stratification in a Mono-Cropping System of Northern China. Soil Tillage Res. 2016, 156, 173–181. [Google Scholar] [CrossRef]
- Serbin, G.; Daughtry, C.S.T.; Hunt, E.R.; Reeves, J.B.; Brown, D.J. Effects of Soil Composition and Mineralogy on Remote Sensing of Crop Residue Cover. Remote Sens. Environ. 2009, 113, 224–238. [Google Scholar] [CrossRef]
- Quemada, M.; Hively, W.D.; Daughtry, C.S.T.; Lamb, B.T.; Shermeyer, J. Improved Crop Residue Cover Estimates Obtained by Coupling Spectral Indices for Residue and Moisture. Remote Sens. Environ. 2018, 206, 33–44. [Google Scholar] [CrossRef]
Month | May | June | July | August | September | October | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||
Paddy rice | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||
Soybean | 1 | 2 | 3 | 4 | 5 | 6 |
Agricultural Sub-Areas | After Harvesting | Before Sowing in the Next Growing Season | ||
---|---|---|---|---|
Sentinel-2 | Landsat-8 | Sentinel-2 | Landsat-8 | |
SJP | 10 October~ 25 November | 30 October~ 20 November | 20 March~20 May | / |
SNP | 20 October~ 10 November | / | 20 March~20 April | / |
CM | 20 October~ 15 November | / | 20 March~20 May | 20 March~20 May |
LPH | 20 October~ 05 November | / | 20 March~20 April | / |
Spectral Index | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized difference tillage index | NDTI | (SWIR1 − SWIR2)/(SWIR1 + SWIR2) | [22] |
Normalized difference index 5 | NDI5 | (NIR − SWIR1)/(NIR + SWIR1) | [36] |
Normalized difference index 7 | NDI7 | (NIR − SWIR2)/(NIR + SWIR2) | [36] |
Normalized difference senescent vegetation index | NDSVI | (SWIR1 − Red)/(SWIR1 + Red) | [37] |
Simple tillage index | STI | SWIR1/SWIR2 | [22] |
Modified crop residue cover | MCRC | (SWIR1 − Green)/(SWIR1 + Green) | [38] |
Normalized difference residue index | NDRI | (Red − SWIR2)/(Red + SWIR2) | [39] |
Variables | After Harvesting (N = 242) | Before Sowing (N = 184) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
NDTI | 0.66 ** | 0.11 | 0.60 ** | 0.12 |
NDI5 | 0.30 ** | 0.17 | 0.14 ** | 0.19 |
NDI7 | 0.50 ** | 0.13 | 0.38 ** | 0.15 |
NDSVI | 0.20 ** | 0.17 | 0.04 ** | 0.19 |
STI | 0.66 ** | 0.11 | 0.61 ** | 0.12 |
MCRC | 0.14 ** | 0.17 | 0.09 ** | 0.18 |
NDRI | 0.45 ** | 0.14 | 0.32 ** | 0.15 |
NIR_mean | 0.33 ** | 0.15 | 0.09 ** | 0.18 |
Blue_mean | 0.21 ** | 0.17 | 0.09 ** | 0.20 |
Green_mean | 0.30 ** | 0.16 | 0.10 ** | 0.18 |
Red_mean | 0.31 ** | 0.15 | 0.11 ** | 0.17 |
SWIR1_mean | 0.22 ** | 0.17 | 0.09 ** | 0.18 |
Red_contrast | 0.16 ** | 0.17 | 0.05 ** | 0.19 |
Combination | Variables | After Harvesting | Before Sowing | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
C1 | NDTI, STI, NDI7, NDRI | 0.74 ** | 0.10 | 0.71 ** | 0.10 |
C2 | NDTI, STI, NDI7, NDRI, NDI5, MCRC, NDSVI | 0.75 ** | 0.10 | 0.73 ** | 0.09 |
C3 | NIR_mean, Blue_mean, Red_mean, Green_mean | 0.40 ** | 0.15 | 0.20 ** | 0.17 |
C4 | NIR_mean, Blue_mean, Red_mean, Red_contrast, SWIR1_mean, Green_mean | 0.51 ** | 0.14 | 0.42 ** | 0.14 |
C5 | NDTI, STI, NDI7, NDRI, NDI5, MCRC, NDSVI, NIR_mean, Blue_mean, Red_mean, SWIR1_mean, Red_contrast, Green_mean | 0.78 ** | 0.10 | 0.73 ** | 0.10 |
C6 | NDTI, STI, NDI7, NDRI, NIR_mean, Blue_mean, Red_mean, SWIR1_mean, Red_contrast, Green_mean | 0.77 ** | 0.10 | 0.73 ** | 0.11 |
Variables | Clay Soil Zone | Sand Soil Zone | After Soil Zone | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
NDTI | After harvesting | 0.67 ** | 0.11 | 0.65 ** | 0.11 | 0.66 ** | 0.11 |
Before sowing | 0.61 ** | 0.11 | 0.55 ** | 0.12 | 0.662 ** | 0.11 | |
NDI5 | After harvesting | 0.33 ** | 0.15 | 0.30 ** | 0.16 | 0.32 ** | 0.15 |
Before sowing | 0.25 ** | 0.17 | 0.05 ** | 0.18 | 0.22 ** | 0.17 | |
NDI7 | After harvesting | 0.51 ** | 0.13 | 0.49 ** | 0.13 | 0.51 ** | 0.13 |
Before sowing | 0.42 ** | 0.14 | 0.32 ** | 0.15 | 0.42 ** | 0.15 | |
NDSVI | After harvesting | 0.25 ** | 0.16 | 0.22 ** | 0.16 | 0.24 ** | 0.16 |
Before sowing | 0.08 ** | 0.17 | 0.01 ** | 0.19 | 0.13 ** | 0.18 | |
STI | After harvesting | 0.66 ** | 0.11 | 0.65 ** | 0.11 | 0.66 ** | 0.11 |
Before sowing | 0.61 ** | 0.11 | 0.57 ** | 0.11 | 0.63 ** | 0.11 | |
MCRC | After harvesting | 0.24 ** | 0.17 | 0.18 ** | 0.16 | 0.21 ** | 0.17 |
Before sowing | 0.10 ** | 0.18 | 0.05 ** | 0.18 | 0.15 ** | 0.18 | |
NDRI | After harvesting | 0.56 ** | 0.13 | 0.44 ** | 0.14 | 0.49 ** | 0.14 |
Before sowing | 0.35 ** | 0.15 | 0.25 ** | 0.16 | 0.36 ** | 0.15 | |
NIR_mean | After harvesting | 0.35 ** | 0.15 | 0.31 ** | 0.16 | 0.34 ** | 0.15 |
Before sowing | 0.01 ** | 0.18 | 0.01 ** | 0.18 | 0.09 ** | 0.18 | |
Blue_mean | After harvesting | 0.26 ** | 0.16 | 0.20 ** | 0.17 | 0.24 ** | 0.16 |
Before sowing | 0.01 ** | 0.18 | 0.02 ** | 0.18 | 0.10 ** | 0.18 | |
Green_mean | After harvesting | 0.27 ** | 0.15 | 0.29 ** | 0.16 | 0.31 ** | 0.16 |
Before sowing | 0.02 ** | 0.18 | 0.03 ** | 0.18 | 0.10 ** | 0.18 | |
Red_mean | After harvesting | 0.3020 ** | 0.15 | 0.29 ** | 0.16 | 0.10 ** | 0.21 |
Before sowing | 0.02 ** | 0.18 | 0.01 ** | 0.18 | 0.13 ** | 0.18 | |
SWIR1_mean | After harvesting | 0.21 ** | 0.16 | 0.11 ** | 0.18 | 0.22 ** | 0.17 |
Before sowing | 0.08 ** | 0.18 | 0.08 ** | 0.18 | 0.16 ** | 0.18 | |
Red_contrast | After harvesting | 0.19 ** | 0.17 | 0.14 ** | 0.18 | 0.22 ** | 0.17 |
Before sowing | 0.01 ** | 0.19 | 0.03 ** | 0.18 | 0.11 ** | 0.19 |
Methods | Clay Soil Zone | Sand Soil Zone | After Soil Zone | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
Multiple linear regression | After harvesting | 0.81 ** | 0.08 | 0.79 ** | 0.10 | 0.81 ** | 0.08 |
Before sowing | 0.75 ** | 0.09 | 0.73 ** | 0.09 | 0.76 ** | 0.09 | |
Random forest | After harvesting | 0.86 ** | 0.08 | 0.81 ** | 0.09 | 0.84 ** | 0.08 |
Before sowing | 0.79 ** | 0.10 | 0.76 ** | 0.08 | 0.81 ** | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Xuan, F.; Li, Z.; Su, W.; Guo, H.; Huang, X.; Li, X.; Huang, J. Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning. Remote Sens. 2023, 15, 2179. https://doi.org/10.3390/rs15082179
Dong Y, Xuan F, Li Z, Su W, Guo H, Huang X, Li X, Huang J. Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning. Remote Sensing. 2023; 15(8):2179. https://doi.org/10.3390/rs15082179
Chicago/Turabian StyleDong, Yi, Fu Xuan, Ziqian Li, Wei Su, Hui Guo, Xianda Huang, Xuecao Li, and Jianxi Huang. 2023. "Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning" Remote Sensing 15, no. 8: 2179. https://doi.org/10.3390/rs15082179
APA StyleDong, Y., Xuan, F., Li, Z., Su, W., Guo, H., Huang, X., Li, X., & Huang, J. (2023). Modeling the Corn Residue Coverage after Harvesting and before Sowing in Northeast China by Random Forest and Soil Texture Zoning. Remote Sensing, 15(8), 2179. https://doi.org/10.3390/rs15082179