A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting
Abstract
:1. Introduction
2. Technology of Systematic Earthquake Prediction
3. Platform for Systematic Earthquake Prediction
3.1. Architecture
3.2. GIS Prognosis Functions
- Automatic loading of source data from remote servers. The input data consist of earthquake catalogs and process monitoring time series that represent the preparation of a strong earthquake source. Data from the following websites are used:
- –
- Website of the Kamchatka Branch of the Geophysical Survey of the RAS http://sdis.emsd.ru/info/earthquakes/catalogue.php (accessed on 5 March 2023) [26];
- –
- –
- International Seismological Centre (20XX), On-line Bulletin, https://doi.org/10.31905/D808B830 (accessed on 5 March 2023) [29];
- –
- –
- Nevada Geodetic Laboratory website http://geodesy.unr.edu/about.php (accessed on 5 March 2023) [32].
Earthquake catalog data are updated daily, and GPS data are downloaded with a step. - Preprocessing of input data. Earthquake catalogs are limited by the depth of hypocenters and by the minimum representative magnitude of earthquakes. Time series of receiving GPS monitoring stations are cleaned of noise and processed taking into account data gaps.
- Analysis. Earthquake catalogs and time series are used to calculate grid spatiotemporal fields of forecast features in a universal coordinate grid and with the same time step.
- Training and forecast. Training is performed on all data available at the time of the forecast. As a result of training, the alarm zone is calculated, in which the appearance of epicenters of target events in the interval T is expected.
- Joint visual analysis of maps of time slices of fields with the epicenters of target earthquakes occurring in the interval T of the forecast, and with the epicenters of earthquakes with magnitudes above a given threshold that occurred in the interval T before this forecast;
- Interactive analysis of graphs of time series of values of spatiotemporal fields;
- Tabular and graphical presentation of statistical estimates of forecast quality;
- Preparation of a GIS project for analysis in GIS GeoTime.
3.3. GIS GeoTime Functions
- Animated representation of 2D slices of 3D and 4D grid and vector fields;
- Combined animation representation of grid and point spatiotemporal fields;
- Interactive cartographic measurement of grid field values and attributes of vector objects;
- Interactive graphical representation of slices and time series of grid spatiotemporal fields;
- Representation of statistics of interactively selectable polygons of grid fields;
- Management of the palette and dimensions of the cartographic presentation of data.
- Point Data
- –
- Earthquake catalogs: estimation of minimum representative magnitude and seismic regime parameters, calculation of earthquake sub-catalogs by sorting by magnitude, depth, time, and coordinates;
- –
- Time series: data gap correction, smoothing, parameter estimation.
- Grid Fields
- –
- –
- Calculation of spatial and spatiotemporal grid fields from the fields of lines and polygons;
- –
- Grid field filtering: averaging, median smoothing, calculation of derivatives, modulus and azimuth of the spatial gradient, anisotropic smoothing via the AWS method (see Section 4.2.2);
- –
- Evaluation of changes in field values in time and space;
- –
- Estimation of invariants of 2D vector fields: divergence, rotor, shift;
- –
- Estimation of fields of quantiles of values of spatiotemporal fields;
- –
- Grid calculations: calculations on arbitrary algebraic and logical formulas;
- –
- Estimation of the field of field correlation coefficients in a sliding space–time window;
- –
- Estimation of the spatial field of similarity between the time series of the spatiotemporal field and the time series of the same field at an arbitrary point.
- Training and modeling of earthquake prediction using the method of minimum area of alarm.
- –
- Prediction of anomalous objects in spatiotemporal fields;
- –
- Detection of alarm time intervals in spatiotemporal fields;
- –
- Detection of alarm zones at alarm intervals.
- Training in the detection of anomalous geological objects.
- Study of the effectiveness of earthquake precursors.
- Study of the possibility of increasing the sample size of events for training:
- a
- By adding earthquakes with smaller magnitudes than the target events [23];
- b
- By combining several regions of the same type in terms of seismotectonics and geodynamics.
- Study of the possibility of predicting earthquake magnitudes [24].
- Investigation of earthquake time prediction in a given region.
- Study of spatiotemporal patterns of earthquake precursors.
- Study of the possibility of using universal spatiotemporal attribute fields for earthquake prediction in regions of the same type in terms of seismotectonics and geodynamics.
- Experimental study of physical models of earthquake preparation.
4. Case Studies
4.1. GIS Prognosis
4.2. GIS GeoTime
4.2.1. Performance Analysis of Earthquake Prediction Based on Space Geodesy Fields
Method
Modeling
4.2.2. Comparison of Methods to Estimate the Density Fields of Earthquake Epicenters
Method
Modeling
- is a field of the density of earthquake epicenters, calculated according to the earthquake catalog using Gaussian kernel smoothing. The values of the density field of the epicenters are given by
4.2.3. Modeling Systematic Earthquake Prediction in Japan
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyndman, D.; Hyndman, D. Natural Hazards and Disasters; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Sobolev, G. Principles of Earthquake Prediction; Nauka Publishing House: Moscow, Russia, 1993. [Google Scholar]
- Sobolev, G.; Ponomarev, A. Earthquake Physics and Precursors; Nauka Publishing House: Moscow, Russia, 2003. [Google Scholar]
- Geller, R.J.; Jackson, D.D.; Kagan, Y.Y.; Mulargia, F. Earthquakes cannot be predicted. Science 1997, 275, 1616. [Google Scholar] [CrossRef]
- Koronovskii, N.; Naimark, A. Unpredictability of earthquakes as a fundamental consequence of the nonlinearity of geodynamic systems. Vestn. Mgu. Ser. 4 Geol. 2012, 6, 3–12. [Google Scholar]
- Gufeld, I.; Matveeva, M.; Novoselov, O. Why can not we implement forecast strong crustal earthquakes. Geodin. I Tektonofiz. 2011, 2, 378–415. [Google Scholar] [CrossRef]
- Keilis-Borok, V.; Soloviev, A.A. Nonlinear Dynamics of the Lithosphere and Earthquake Prediction; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Kossobokov, V.; Shebalin, P. Earthquake prediction. In Nonlinear Dynamics of the Lithosphere and Earthquake Prediction; Springer: Berlin/Heidelberg, Germany, 2003; pp. 141–207. [Google Scholar]
- Corbi, F.; Sandri, L.; Bedford, J.; Funiciello, F.; Brizzi, S.; Rosenau, M.; Lallemand, S. Machine learning can predict the timing and size of analog earthquakes. Geophys. Res. Lett. 2019, 46, 1303–1311. [Google Scholar] [CrossRef]
- Shebalin, P.N.; Narteau, C.; Zechar, J.D.; Holschneider, M. Combining earthquake forecasts using differential probability gains. Earth Planets Space 2014, 66, 37. [Google Scholar] [CrossRef]
- Amei, A.; Fu, W.; Ho, C.H. Time series analysis for predicting the occurrences of large scale earthquakes. Int. J. Appl. Sci. Technol. 2012, 2, 1–12. [Google Scholar]
- Marzocchi, W.; Zechar, J.D. Earthquake forecasting and earthquake prediction: Different approaches for obtaining the best model. Seismol. Res. Lett. 2011, 82, 442–448. [Google Scholar] [CrossRef]
- Moustra, M.; Avraamides, M.; Christodoulou, C. Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 2011, 38, 15032–15039. [Google Scholar] [CrossRef]
- Rhoades, D.A. Mixture models for improved earthquake forecasting with short-to-medium time horizons. Bull. Seismol. Soc. Am. 2013, 103, 2203–2215. [Google Scholar] [CrossRef]
- Kail, R.; Burnaev, E.; Zaytsev, A. Recurrent convolutional neural networks help to predict location of earthquakes. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Priambodo, B.; Mahmudy, W.F.; Rahman, M.A. Earthquake Magnitude and Grid-Based Location Prediction using Backpropagation Neural Network. Knowl. Eng. Data Sci. 2020, 3, 28–39. [Google Scholar] [CrossRef]
- Asim, K.M.; Idris, A.; Iqbal, T.; Martínez-Álvarez, F. Earthquake prediction model using support vector regressor and hybrid neural networks. PLoS ONE 2018, 13, e0199004. [Google Scholar] [CrossRef]
- Panakkat, A.; Adeli, H. Neural network models for earthquake magnitude prediction using multiple seismicity indicators. Int. J. Neural Syst. 2007, 17, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Gitis, V.; Derendyaev, A.; Weinstock, A. Web-based GIS technologies for monitoring and analysis of spatio-temporal processes. Int. J. Web Inf. Syst. 2016, 12, 102–124. [Google Scholar] [CrossRef]
- Gitis, V.G.; Derendyaev, A.B. Web-Based GIS platform for automatic prediction of earthquakes. In Computational Science and Its Applications—ICCSA 2018, Proceedings of the 8th International Conference, Melbourne, VIC, Australia, 2–5 July 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 268–283. [Google Scholar]
- Gitis, V.; Derendyaev, A. From monitoring of seismic fields to the automatic forecasting of earthquakes. Int. J. Web Inf. Syst. 2019, 15, 535–549. [Google Scholar] [CrossRef]
- Gitis, V.G.; Derendyaev, A.B. Machine Learning Methods for Seismic Hazards Forecast. Geosciences 2019, 9, 308. [Google Scholar] [CrossRef]
- Gitis, V.; Derendyaev, A. The Method of the Minimum Area of Alarm for Earthquake Magnitude Prediction. Front. Earth Sci. 2020, 8, 482. [Google Scholar] [CrossRef]
- Gitis, V.; Derendyaev, A.; Petrov, K. Analyzing the Performance of GPS Data for Earthquake Prediction. Remote Sens. 2021, 13, 1842. [Google Scholar] [CrossRef]
- Gitis, V.; Derendyaev, A.; Petrov, K. On the Applied Efficiency of Systematic Earthquake Prediction. In Proceedings of the Computational Science and Its Applications–ICCSA 2022 Workshops, Malaga, Spain, 4–7 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 607–624. [Google Scholar]
- Chebrova, A.Y.; Chemarev, A.; Matveenko, E.; Chebrov, D. Seismological data information system in Kamchatka branch of GS RAS: Organization principles, main elements and key functions. Geophys. Res. 2020, 21, 66–91. [Google Scholar]
- Barnhart, W.D.; Hayes, G.P.; Wald, D.J. Global earthquake response with imaging geodesy: Recent examples from the USGS NEIC. Remote Sens. 2019, 11, 1357. [Google Scholar] [CrossRef]
- Masse, R.; Needham, R. NEIC-The national earthquake information center. Earthq. Volcanoes (Usgs) 1989, 21, 4–44. [Google Scholar]
- Bondár, I.; Storchak, D. Improved location procedures at the International Seismological Centre. Geophys. J. Int. 2011, 186, 1220–1244. [Google Scholar] [CrossRef]
- Okada, Y.; Kasahara, K.; Hori, S.; Obara, K.; Sekiguchi, S.; Fujiwara, H.; Yamamoto, A. Recent progress of seismic observation networks in Japan: Hi-net, F-net, K-NET and KiK-net. Earth Planets Space 2004, 56, xv–xxviii. [Google Scholar] [CrossRef]
- Obara, K.; Kasahara, K.; Hori, S.; Okada, Y. A densely distributed high-sensitivity seismograph network in Japan: Hi-net by National Research Institute for Earth Science and DisasterPrevention. Rev. Sci. Instrum. 2005, 76, 021301. [Google Scholar] [CrossRef]
- Blewitt, G.; Hammond, W.C.; Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 2018, 99, 485. [Google Scholar] [CrossRef]
- Bune, V.; Gorshkov, G. Seismic Zonation of USSR; Nauka: Moscow, Russia, 1980; p. 307. [Google Scholar]
- Riznichenko, Y.V. On the study of the seismic regime. Izv. Akad. Nauk Sssr Ser. Geofiz 1958, 9, 1057–1074. [Google Scholar]
- Sobolev, G.; Tyupkin, Y.S. Anomalies in the weak seismicity regime prior to Kamchatka strong earthquakes. Vulkanol. Seismol 1996, 4, 64–74. [Google Scholar]
- Polzehl, J.; Spokoiny, V.G. Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2000, 62, 335–354. [Google Scholar] [CrossRef]
- Polzehl, J.; Spokoiny, V. Propagation-separation approach for local likelihood estimation. Probab. Theory Relat. Fields 2006, 135, 335–362. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Courier Corporation: Chelmsford, MA, USA, 1997. [Google Scholar]
- Gitis, V.; Derendyaev, A.; Pirogov, S.; Spokoiny, V.; Yurkov, E. Adaptive estimation of seismic parameter fields from earthquake catalogs. J. Commun. Technol. Electron. 2015, 60, 1459–1465. [Google Scholar] [CrossRef]
- Gitis, V.G.; Derendyaev, A.B.; Pirogov, S.A.; Spokoiny, V.G.; Yurkov, E. Earthquake prediction using the fields estimated by an adaptive algorithm. In Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, Amantea, Italy, 19–22 June 2017; pp. 1–8. [Google Scholar]
No. | Time | Longitude | Latitude | Depth (km) | Magnitude | Volume of Alarm | ||
---|---|---|---|---|---|---|---|---|
Field | Field | Field | ||||||
1 | 2016/12/28 | −118.899 | 38.376 | 11.3 | 5.60 | 0.07 | 0.15 | 0.08 |
2 | 2016/12/28 | −118.897 | 38.390 | 12.2 | 5.60 | 0.07 | 0.15 | 0.08 |
3 | 2016/12/28 | −118.896 | 38.378 | 8.8 | 5.50 | 0.07 | 0.15 | 0.08 |
4 | 2019/07/04 | −117.504 | 35.705 | 10.5 | 6.40 | 0.08 | 0.15 | 0.09 |
5 | 2019/07/06 | −117.599 | 35.770 | 8.0 | 7.10 | 0.08 | 0.15 | 0.09 |
6 | 2019/07/06 | −117.750 | 35.901 | 5.04 | 5.50 | 0.04 | 0.04 | 0.09 |
7 | 2020/05/15 | −117.850 | 38.169 | 2.7 | 6.50 | 0.02 | 0.04 | 0.02 |
8 | 2020/06/04 | −117.428 | 35.615 | 8.44 | 5.51 | 0.52 | 0.60 | 0.45 |
9 | 2020/06/24 | −117.975 | 36.447 | 4.66 | 5.80 | 0.05 | 0.04 | 0.07 |
10 | 2021/07/08 | −119.500 | 38.508 | 7.45 | 6.00 | 0.40 | 1.00 | 0.38 |
No. | Time | Longitude | Latitude | Depth (km) | Magnitude | Volume of Alarm | ||
---|---|---|---|---|---|---|---|---|
Field | Field | Field | ||||||
1 | 2010/06/11 | 160.45 | 52.22 | 38.0 | 6.3 | 0.300 | 0.159 | 0.197 |
2 | 2011/01/15 | 162.47 | 55.73 | 49.0 | 6.3 | 0.303 | 0.154 | 0.293 |
3 | 2012/08/27 | 160.08 | 51.53 | 44.0 | 6.0 | 0.508 | 1.000 | 0.290 |
4 | 2013/01/12 | 157.94 | 50.63 | 52.0 | 6.4 | 0.124 | 0.040 | 0.120 |
5 | 2013/01/15 | 157.66 | 50.63 | 51.0 | 6.1 | 0.124 | 0.035 | 0.010 |
6 | 2013/01/20 | 157.80 | 50.65 | 49.0 | 6.1 | 0.022 | 0.035 | 0.010 |
7 | 2013/02/04 | 160.33 | 50.68 | 58.0 | 6.2 | 0.895 | 1.000 | 0.090 |
8 | 2013/03/02 | 158.04 | 49.77 | 45.0 | 6.2 | 0.023 | 0.365 | 0.010 |
9 | 2013/03/03 | 157.88 | 49.74 | 39.0 | 6.7 | 0.023 | 0.223 | 0.010 |
10 | 2013/04/01 | 160.69 | 52.01 | 50.0 | 6.1 | 0.354 | 0.223 | 0.009 |
11 | 2013/04/01 | 160.65 | 52.08 | 42.0 | 6.0 | 0.430 | 0.155 | 0.009 |
12 | 2013/04/01 | 160.67 | 52.18 | 40.0 | 6.0 | 0.500 | 0.155 | 0.009 |
13 | 2013/04/02 | 160.89 | 52.22 | 59.0 | 6.1 | 0.500 | 0.155 | 0.009 |
14 | 2013/04/02 | 160.63 | 52.18 | 43.0 | 6.2 | 0.430 | 0.079 | 0.009 |
15 | 2013/04/03 | 160.49 | 52.05 | 48.0 | 6.5 | 0.354 | 0.155 | 0.009 |
16 | 2014/05/15 | 166.86 | 55.19 | 43.0 | 6.0 | 0.681 | 0.347 | 1.0 |
17 | 2016/02/13 | 163.14 | 54.14 | 42.0 | 6.7 | 0.501 | 0.283 | 0.489 |
18 | 2016/03/09 | 161.11 | 53.66 | 48.0 | 6.2 | 0.429 | 0.100 | 0.417 |
19 | 2017/08/24 | 160.33 | 53.10 | 51.0 | 6.0 | 0.153 | 0.079 | 0.328 |
20 | 2017/12/19 | 166.65 | 55.37 | 46.0 | 6.3 | 0.155 | 0.020 | 0.014 |
21 | 2018/04/16 | 162.44 | 55.08 | 56.0 | 6.4 | 0.267 | 0.063 | 0.189 |
22 | 2018/09/04 | 157.26 | 49.09 | 41.0 | 6.6 | 0.084 | 0.117 | 0.034 |
23 | 2018/11/14 | 164.71 | 54.91 | 54.0 | 7.3 | 0.681 | 0.275 | 0.003 |
24 | 2018/11/14 | 164.85 | 54.99 | 54.0 | 6.0 | 0.649 | 0.275 | 0.003 |
25 | 2018/11/16 | 164.71 | 55.12 | 55.0 | 6.0 | 0.569 | 0.219 | 0.003 |
26 | 2018/11/18 | 164.46 | 55.25 | 51.0 | 6.6 | 0.405 | 0.219 | 0.003 |
27 | 2019/02/20 | 160.07 | 50.51 | 49.0 | 6.3 | 0.126 | 0.702 | 0.288 |
28 | 2019/05/20 | 164.41 | 56.18 | 57.0 | 6.4 | 0.179 | 0.227 | 0.016 |
29 | 2019/05/20 | 164.36 | 56.16 | 53.0 | 6.5 | 0.010 | 0.219 | 0.016 |
30 | 2019/07/04 | 162.04 | 55.78 | 60.0 | 6.0 | 0.132 | 0.074 | 0.175 |
31 | 2020/01/15 | 160.92 | 53.44 | 52.0 | 6.4 | 0.356 | 0.066 | 0.437 |
32 | 2020/02/28 | 166.21 | 54.67 | 37.0 | 6.0 | 0.580 | 0.510 | 0.458 |
Volume of Alarm | Field | Field | Field | |||
---|---|---|---|---|---|---|
0.05 | 4 | 0.125 | 4 | 0.125 | 19 | 0.594 |
0.10 | 5 | 0.156 | 9 | 0.281 | 20 | 0.625 |
0.15 | 9 | 0.281 | 11 | 0.344 | 20 | 0.625 |
0.20 | 12 | 0.375 | 17 | 0.531 | 23 | 0.719 |
0.25 | 12 | 0.375 | 23 | 0.719 | 23 | 0.719 |
0.30 | 14 | 0.438 | 26 | 0.813 | 26 | 0.813 |
No. | Time | Longitude | Latitude | Depth (km) | Magnitude | Volume of Alarm | |
---|---|---|---|---|---|---|---|
Field S | Fields S and F | ||||||
1 | 2016/10/21 | 133.856 | 35.380 | 10.6 | 6.6 | 0.874 | 0.163 |
2 | 2016/11/23 | 141.346 | 37.175 | 23.8 | 6.2 | 0.139 | 0.142 |
3 | 2016/12/28 | 140.574 | 36.720 | 10.8 | 6.3 | 0.010 | 0.270 |
4 | 2018/04/08 | 132.587 | 35.185 | 12.1 | 6.1 | 0.617 | 0.726 |
5 | 2018/06/17 | 135.622 | 34.844 | 13.0 | 6.1 | 0.263 | 0.146 |
6 | 2018/07/07 | 140.592 | 35.165 | 56.8 | 6.0 | 0.266 | 0.046 |
7 | 2019/01/08 | 131.165 | 30.573 | 30.1 | 6.0 | 0.899 | 0.161 |
8 | 2019/06/18 | 139.479 | 38.608 | 14.0 | 6.7 | 0.903 | 0.160 |
9 | 2020/04/19 | 142.099 | 38.888 | 46.1 | 6.2 | 0.343 | 0.417 |
10 | 2020/06/24 | 141.113 | 35.553 | 36.1 | 6.1 | 0.209 | 0.328 |
11 | 2021/03/20 | 141.628 | 38.468 | 59.5 | 6.9 | 0.071 | 0.034 |
12 | 2021/05/01 | 141.740 | 38.174 | 51.4 | 6.8 | 0.055 | 0.004 |
13 | 2022/01/21 | 132.072 | 32.716 | 44.6 | 6.6 | 0.219 | 0.104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gitis, V.; Derendyaev, A. A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting. Remote Sens. 2023, 15, 2171. https://doi.org/10.3390/rs15082171
Gitis V, Derendyaev A. A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting. Remote Sensing. 2023; 15(8):2171. https://doi.org/10.3390/rs15082171
Chicago/Turabian StyleGitis, Valery, and Alexander Derendyaev. 2023. "A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting" Remote Sensing 15, no. 8: 2171. https://doi.org/10.3390/rs15082171
APA StyleGitis, V., & Derendyaev, A. (2023). A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting. Remote Sensing, 15(8), 2171. https://doi.org/10.3390/rs15082171