Analysis of Geometric Characteristics and Coverage for Moon-Based/Spaceborne Bistatic SAR Earth Observation
Abstract
:1. Introduction
2. Data and Methods
2.1. Ephemerides and Earth Orientation Parameters
2.2. Satellite Orbit
2.3. Reference Systems and Transformations
- The Earth is a sphere with a radius of = 6378 km;
- The Moon is a sphere with a radius of = 1737 km;
- The Moon-based observatory is located at the center of the lunar near side (0°, 0°).
3. Results and Discussion
3.1. Geometric Model
3.2. Nadir Points of the Moon-Based Observatory and Satellites on Earth
3.2.1. Nadir Points Characteristics of Moon-Based Observatory
3.2.2. Nadir Track Characteristics of Satellites and Moon
3.3. Coverage Characteristic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.D. Theory and Application of Earth Observation by Radar; Science Press: Beijing, China, 2000. [Google Scholar]
- Huadong, G.; Wenjin, W.; Ke, Z.; Xinwu, L. New generation SAR for Earth environment observation. Acta Geod. Cartogr. Sin. 2022, 51, 862. [Google Scholar]
- Reid, W.V.; Chen, D.; Goldfarb, L.; Hackmann, H.; Lee, Y.-T.; Mokhele, K.; Ostrom, E.; Raivio, K.; Rockström, J.; Schellnhuber, H.J. Earth system science for global sustainability: Grand challenges. Science 2010, 330, 916–917. [Google Scholar] [CrossRef]
- Hobbs, S.; Mitchell, C.; Forte, B.; Holley, R.; Snapir, B.; Whittaker, P. System Design for Geosynchronous Synthetic Aperture Radar Missions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7750–7763. [Google Scholar] [CrossRef]
- Long, T.; Hu, C.; Ding, Z.; Dong, X.; Tian, W.; Zeng, T. Geosynchronous SAR: System and Signal Processing; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sun, Z.; Yen, G.G.; Wu, J.; Ren, H.; An, H.; Yang, J. Mission planning for energy-efficient passive UAV radar imaging system based on substage division collaborative search. IEEE Trans. Cybern. 2021, 53, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, J.; Pei, J.; Li, Z.; Huang, Y.; Yang, J. Inclined geosynchronous spaceborne–airborne bistatic SAR: Performance analysis and mission design. IEEE Trans. Geosci. Remote Sens. 2015, 54, 343–357. [Google Scholar] [CrossRef]
- Guo, H.D.; Ding, Y.X.; Liu, G. Moon-based Earth observation. Sci. Bull. 2022, 67, 2036–2039. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.Z.; Guo, H.D.; Liu, G.; Ye, H.L. Simulation Study of Geometric Characteristics and Coverage for Moon-Based Earth Observation in the Electro-Optical Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2431–2440. [Google Scholar] [CrossRef]
- Li, C.L.; Wang, C.; Wei, Y.; Lin, Y.T. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [Google Scholar] [CrossRef]
- Zhao, W.J.; Wang, C. China’s lunar and deep space exploration: Touching the Moon and exploring the universe. Natl. Sci. Rev. 2019, 6, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Craig, D.; Herrmann, N.; Mahoney, E.; Krezel, J.; McIntyre, N.; Goodliff, K. The Artemis Program: An Overview of NASA’s Activities to Return Humans to the Moon. In Proceedings of the 2020 IEEE Aerospace Conference (Aeroconf 2020), Big Sky, MT, USA, 7–14 March 2020. [Google Scholar]
- Wang, Q.; Liu, J.Z. A Chang’e-4 mission concept and vision of future Chinese lunar exploration activities. Acta Astronaut. 2016, 127, 678–683. [Google Scholar] [CrossRef]
- Guo, H.D. Earth system observation from space: From scientific satellite to Moon-based platform. J. Remote Sens. 2016, 20, 716–723. [Google Scholar]
- Guo, H.D.; Liu, G.; Ding, Y.X. Moon-based Earth observation: Scientific concept and potential applications. Int. J. Digit. Earth 2018, 11, 546–557. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, K.S. Effects of the Earth’s Curvature and Lunar Revolution on the Imaging Performance of the Moon-Based Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5868–5882. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, H.; Liu, G.; Han, C.; Shang, H.; Ruan, Z.; Lv, M. Constructing a high-accuracy geometric model for Moon-based Earth observation. Remote Sens. 2019, 11, 2611. [Google Scholar] [CrossRef]
- Chen, G.; Guo, H.; Ding, Y.; Shang, H.; Lv, M.; Zhang, K. Influence of topography on the site selection of a Moon-based Earth observation station. Sensors 2021, 21, 7198. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.D.; Fu, W.X.; Liu, G. Development of Earth Observation Satellites. In Scientific Satellite and Moon-Based Earth Observation for Global Change; Springer: Singapore, 2019; pp. 31–49. [Google Scholar]
- Li, T.; Hajnsek, I.; Chen, K.-S. Sensitivity analysis of bistatic scattering for soil moisture retrieval. Remote Sens. 2021, 13, 188. [Google Scholar] [CrossRef]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H.; Park, R.S.; Kuchynka, P. The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep. 2014, 196, 42–196. [Google Scholar]
- Hoots, F.R.; Roehrich, R.L. Models for Propagation of NORAD Element Sets; Aerospace Defense Command Peterson AFB CO Office of Astrodynamics: Fort Belvoir, VA, USA, 1980. [Google Scholar]
- Montenbruck, O.; Gill, E.; Lutze, F. Satellite orbits: Models, methods, and applications. Appl. Mech. Rev. 2002, 55, B27–B28. [Google Scholar] [CrossRef]
- Chen, G.; Guo, H.; Jiang, H.; Han, C.; Ding, Y.; Wu, K. Analysis of Comprehensive Multi-Factors on Station Selection for Moon-Based Earth Observation. Remote Sens. 2022, 14, 5404. [Google Scholar] [CrossRef]
- Sui, Y.; Guo, H.; Liu, G.; Ren, Y. Analysis of long-term Moon-based observation characteristics for Arctic and Antarctic. Remote Sens. 2019, 11, 2805. [Google Scholar] [CrossRef]
- Dong, J.L.; Shen, Q.; Jiang, L.M.; Jiang, H.J.; Li, D.W.; Wang, H.S.; Mao, S. An Analysis of Spatiotemporal Baseline and Effective Spatial Coverage for Lunar-Based SAR Repeat-Track Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3458–3469. [Google Scholar] [CrossRef]
- Gonzalez, A. Measurement of Area on a Sphere Using Fibonacci and Latitude-Longitude Lattices. Math. Geosci. 2010, 42, 49–64. [Google Scholar] [CrossRef]
Location | Annual Accumulated Observable Time (Hours) | CV | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||
105°E, 75°N | 341.5 | 295.3 | 287.5 | 304.2 | 240.7 | 237.7 | 235.8 | 191.5 | 184.8 | 130.8 | 96.0 | 98.5 | 79.3 | 92.0 | 146.0 | 158.8 | 198.5 | 289.8 | 275.5 | 40.34% |
105°E, 60°N | 703.5 | 635.7 | 612.5 | 637.0 | 543.7 | 560.8 | 591.5 | 550.5 | 587.0 | 552.3 | 491.2 | 521.8 | 459.3 | 448.0 | 528.2 | 502.3 | 554.5 | 663.3 | 614.3 | 12.01% |
105°E, 45°N | 1112.7 | 1048.5 | 1012.2 | 1039.5 | 936.3 | 973.7 | 1035.5 | 998.8 | 1077.0 | 1071.0 | 1012.3 | 1067.7 | 1002.2 | 958.5 | 1021.7 | 968.3 | 1006.3 | 1099.3 | 1033.0 | 4.65% |
105°E, 30°N | 1723.0 | 1658.7 | 1625.0 | 1662.2 | 1595.0 | 1650.5 | 1716.5 | 1687.5 | 1770.7 | 1771.7 | 1722.3 | 1782.8 | 1744.5 | 1702.7 | 1758.2 | 1693.8 | 1701.3 | 1738.7 | 1660.0 | 3.06% |
105°E, 15°N | 2294.8 | 2260.8 | 2240.2 | 2262.7 | 2226.8 | 2262.7 | 2292.5 | 2270.5 | 2321.7 | 2324.7 | 2295.5 | 2336.7 | 2312.0 | 2285.2 | 2320.8 | 2278.3 | 2285.2 | 2299.0 | 2252.7 | 1.32% |
105°E, 0°N | 2774.5 | 2763.5 | 2772.7 | 2770.7 | 2773.2 | 2788.7 | 2793.5 | 2807.5 | 2819.5 | 2823.5 | 2834.8 | 2837.5 | 2829.7 | 2835.7 | 2825.3 | 2811.8 | 2806.2 | 2789.3 | 2778.0 | 0.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Guo, H.; Jiang, D.; Han, C. Analysis of Geometric Characteristics and Coverage for Moon-Based/Spaceborne Bistatic SAR Earth Observation. Remote Sens. 2023, 15, 2151. https://doi.org/10.3390/rs15082151
Zhang K, Guo H, Jiang D, Han C. Analysis of Geometric Characteristics and Coverage for Moon-Based/Spaceborne Bistatic SAR Earth Observation. Remote Sensing. 2023; 15(8):2151. https://doi.org/10.3390/rs15082151
Chicago/Turabian StyleZhang, Ke, Huadong Guo, Di Jiang, and Chunming Han. 2023. "Analysis of Geometric Characteristics and Coverage for Moon-Based/Spaceborne Bistatic SAR Earth Observation" Remote Sensing 15, no. 8: 2151. https://doi.org/10.3390/rs15082151
APA StyleZhang, K., Guo, H., Jiang, D., & Han, C. (2023). Analysis of Geometric Characteristics and Coverage for Moon-Based/Spaceborne Bistatic SAR Earth Observation. Remote Sensing, 15(8), 2151. https://doi.org/10.3390/rs15082151