Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Datasets
2.2.1. PM2.5 Station Data
2.2.2. Satellite AOD Data
MODIS-DT | MAIAC | SLSTR | TROPOMI | |
---|---|---|---|---|
Satellite | Terra/Aqua | Terra/Aqua | Sentinel-3a | Sentinel-5p |
Overpass time | 10:30/13:30 | 10:30/13:30 | 10:30 | 13:30 |
Instrument | MODIS | MODIS | SLSTR | TROPOMI |
in operation since | 2000/2002 | 2000/2002 | 2017 | 2017 |
Instrument mode | Radiometer (Nadir-view) | Radiometer (Nadir-view) | Dual-view radiometer (Nadir/along-track) | Spectrometer (Nadir-view) |
Swath width | 2330 km | 2330 km | 1400 km/740 km | 2600 km |
AOD Retrieval | Dark Target Algorithm | Multi-Angle Implementation of Atmospheric Correction Algorithm | Swansea University Algorithm | NASA TropOMAER Algorithm |
Reference | Levy et al. [59], Remer et al. [49] | Lyapustin et al. [50] | North and Heckel [60] | Torres et al. [61] |
Resolution | 3 km × 3 km | 1 km × 1 km | 10 km × 10 km | 5.5 km × 3.5 km |
AOD wavelength | 550 nm | 550 nm | 550 nm | 500 nm |
2.2.3. Meteorological Fields
2.2.4. Additional Satellite Data
2.3. Methods
2.3.1. Random Forest Models
2.3.2. Model Development
2.3.3. Cross-Validation and Final Model Setup
3. Results
3.1. Model Performances
3.2. Feature Importance Analysis
4. Discussion
4.1. Model Performances
4.2. Feature Importance
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Billions of People Still Breath Unhealthy Air: New WHO Data. Available online: https://www.who.int/news/item/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data (accessed on 25 November 2022).
- Lee, S.; Ku, H.; Hyun, C.; Lee, M. Machine Learning-Based Analyses of the Effects of Various Types of Air Pollutants on Hospital Visits by Asthma Patients. Toxics 2022, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic exposure to fine particles and mortality: An extended follow-up of the Harvard Six Cities study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Air Pollution—Air Pollution and Cancer. Available online: https://www.eea.europa.eu/publications/environmental-burden-of-cancer/air-pollution (accessed on 9 January 2022).
- Muttoo, S. The Association of Ambient Nitrogen Dioxide and Particulate Matter Exposure on Infant Lung Function. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2022. [Google Scholar]
- Ebersviller, S.; Lichtveld, K.; Sexton, K.G.; Zavala, J.; Lin, Y.H.; Jaspers, I.; Jeffries, H.E. Gaseous VOCs rapidly modify particulate matter and its biological effects—Part 1: Simple VOCs and model PM. Atmos. Chem. Phys. 2012, 12, 12277–12292. [Google Scholar] [CrossRef] [Green Version]
- Brook, R.D.; Rajagopalan, S. Particulate matter, air pollution, and blood pressure. J. Am. Soc. Hypertens. 2009, 3, 332–350. [Google Scholar] [CrossRef] [PubMed]
- Binter, A.C.; Kusters, M.S.; van den Dries, M.A.; Alonso, L.; Lubczyńska, M.J.; Hoek, G.; White, T.; Iñiguez, C.; Tiemeier, H.; Guxens, M. Air pollution, white matter microstructure, and brain volumes: Periods of susceptibility from pregnancy to preadolescence. Environ. Pollut. 2022, 313, 120109. [Google Scholar] [CrossRef]
- Bai, L.; Benmarhnia, T.; Chen, C.; Kwong, J.C.; Burnett, R.T.; van Donkelaar, A.; Martin, R.V.; Kim, J.; Kaufman, J.S.; Chen, H. Chronic Exposure to Fine Particulate Matter Increases Mortality through Pathways of Metabolic and Cardiovascular Disease: Insights from a Large Mediation Analysis. J. Am. Heart Assoc. 2022, 11, e026660. [Google Scholar] [CrossRef]
- Rittweger, J.; Gilardi, L.; Baltruweit, M.; Dally, S.; Erbertseder, T.; Mittag, U.; Naeem, M.; Schmid, M.; Schmitz, M.-T.; Wüst, S.; et al. Temperature and particulate matter as environmental factors associated with seasonality of influenza incidence—An approach using Earth observation-based modeling in a health insurance cohort study from Baden-Württemberg (Germany). Environ. Health 2022, 21, 131. [Google Scholar] [CrossRef]
- Mendy, A.; Wu, X.; Keller, J.L.; Fassler, C.S.; Apewokin, S.; Mersha, T.B.; Xie, C.; Pinney, S.M. Air pollution and the pandemic: Long-term PM2.5 exposure and disease severity in COVID-19 patients. Respirology 2021, 26, 1181–1187. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Air Quality in Europe 2022. Available online: https://www.eea.europa.eu//publications/air-quality-in-europe-2022 (accessed on 11 January 2023).
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Li, X.; Liu, Z.; Lu, H.; Lu, Y.; Mao, Z.; Chen, X.; Li, N.; Ren, M.; et al. A review on predicting ground PM2.5 concentration using satellite aerosol optical depth. Atmosphere 2016, 7, 129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z.; Bai, K.; Wei, Y.; Xie, Y.; Zhang, Y.; Ou, Y.; Cohen, J.; Zhang, Y.; Peng, Z.; et al. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundam. Res. 2021, 1, 240–258. [Google Scholar] [CrossRef]
- Toth, T.D.; Zhang, J.; Campbell, J.R.; Hyer, E.J.; Reid, J.S.; Shi, Y.; Westphal, D.L. Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the contiguous United States. Atmos. Chem. Phys. 2014, 14, 6049–6062. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.; Apituley, A.; Timmermans, R.M.A.; Koelemeijer, R.B.A.; Leeuw, G.D. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, The Netherlands. Atmos. Chem. Phys. 2009, 9, 909–925. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Zou, B.; Pu, Q.; Bilal, M.; Weng, Q.; Zhai, L.; Nichol, J.E. High-resolution satellite mapping of fine particulates based on geographically weighted regression. IEEE Geosci. Remote Sens. Lett. 2016, 13, 495–499. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sens. Environ. 2018, 206, 72–83. [Google Scholar] [CrossRef]
- Beloconi, A.; Kamarianakis, Y.; Chrysoulakis, N. Estimating urban PM10 and PM2.5 concentrations, based on synergistic MERIS/AATSR aerosol observations, land cover and morphology data. Remote Sens. Environ. 2016, 172, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.J. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect. 2010, 118, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.W.; Martin, R.V.; Van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; et al. Estimating ground-level PM2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument. Atmos. Chem. Phys. 2015, 15, 13133–13144. [Google Scholar] [CrossRef] [Green Version]
- Handschuh, J.; Erbertseder, T.; Schaap, M.; Baier, F. Estimating PM2.5 surface concentrations from AOD: A combination of SLSTR and MODIS. Remote Sens. Appl. Soc. Environ. 2022, 26, 100716. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, K.; Bao, Y.; Cheng, W.; Khan, M.A.; Siddique, N.; Abrar, M.M.; Naidu, R. Predicting the quality of air with machine learning approaches: Current research priorities and future perspectives. J. Clean. Prod. 2022, 379, 134656. [Google Scholar] [CrossRef]
- Murugan, R.; Palanichamy, N. Smart City Air Quality Prediction using Machine Learning. In Proceedings of the 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1048–1054. [Google Scholar] [CrossRef]
- Maaloul, K.; Brahim, L. Comparative Analysis of Mashine Learning for Predicting Air Quality in Smart Cities. WSEAS Trandaction on Computers. 2022. Available online: https://wseas.com/journals/computers/2022/a605105-027(2022).pdf (accessed on 25 September 2022).
- Fernando, R.M.; Ilmini, W.M.K.S.; Vidanagama, D.U. Prediction of Air Quality Index in Colombo. Available online: http://ir.kdu.ac.lk/handle/345/5301 (accessed on 16 November 2022).
- Danesh Yazdi, M.; Kuang, Z.; Dimakopoulou, K.; Barratt, B.; Suel, E.; Amini, H.; Lyapustin, A.; Katsouyanni, K.; Schwartz, J. Predicting fine particulate matter (PM2.5) in the greater London area: An ensemble approach using machine learning methods. Remote Sens. 2020, 12, 914. [Google Scholar] [CrossRef] [Green Version]
- Aman, N.; Manomaiphiboon, K.; Inerb, M.; Devkota, B.; Kokkaew, E.; Wang, Y. A machine learning application for PM2.5 estimation over Greater Bangkok. In Proceedings of the 8th International Conference on Sustainable Energy and Environment (SEE 2022), Bangkok, Thailand, 7–9 November 2022. [Google Scholar]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, H.; Yu, S. Estimating PM2.5 Concentrations in Contiguous Eastern Coastal Zone of China Using MODIS AOD and a Two-Stage Random Forest Model. J. Atmos. Ocean. Technol. 2021, 38, 2071–2080. [Google Scholar] [CrossRef]
- Gao, X.; Ruan, Z.; Liu, J.; Chen, Q.; Yuan, Y. Analysis of Atmospheric Pollutants and Meteorological Factors on PM2.5 Concentration and Temporal Variations in Harbin. Atmosphere 2022, 13, 1426. [Google Scholar] [CrossRef]
- Gupta, P.; Zhan, S.; Mishra, V.; Aekakkararungroj, A.; Markert, A.; Paibong, S.; Chishtie, F. Machine Learning Algorithm for Estimating Surface PM2.5 in Thailand. Aerosol Air Qual. Res. 2021, 21, 210105. [Google Scholar] [CrossRef]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Belle, J.H.; Meng, X.; Wildani, A.; Waller, L.A.; Strickland, M.J.; Liu, Y. Estimating PM2.5 concentrations in the conterminous United States using the random forest approach. Environ. Sci. Technol. 2017, 51, 6936–6944. [Google Scholar] [CrossRef]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Bellander, T.; Bucci, S.; Davoli, M.; De Hoogh, K.; De’Donato, F.; Gariazzo, C.; Lyapustin, A.; Michelozzi, P.; Renzi, M.; et al. Estimation of daily PM10 and PM2.5 concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ. Int. 2019, 124, 170–179. [Google Scholar] [CrossRef]
- Schneider, R.; Vicedo-Cabrera, A.M.; Sera, F.; Masselot, P.; Stafoggia, M.; de Hoogh, K.; Kloog, I.; Reis, S.; Vieno, M.; Gasparrini, A. A satellite-based spatio-temporal machine learning model to reconstruct daily PM2.5 concentrations across Great Britain. Remote Sens. 2020, 12, 3803. [Google Scholar] [CrossRef] [PubMed]
- Holzer-Popp, T.; Leeuw, G.D.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J.L.; Graigner, R.G.; et al. Aerosol retrieval experiments in the ESA Aerosol_cci project. Atmos. Meas. Tech. 2013, 6, 1919–1957. [Google Scholar] [CrossRef] [Green Version]
- Pu, Q.; Yoo, E.H. A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data. Environ. Pollut. 2022, 315, 120419. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, 78141. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.; Pelzer, M.; Toenges-Schuller, N.; Nacken, M.; Niederau, A. ArcGIS basierte Lösung zur detaillierten, deutschlandweiten Verteilung (Gridding) nationaler Emissionsjahreswerte auf Basis des Inventars zur Emissionsberichterstattung. Dessau. Roßlau Retrieved 2016, 27, 2019. [Google Scholar]
- Yao, F.; Si, M.; Li, W.; Wu, J. A multidimensional comparison between MODIS and VIIRS AOD in estimating ground-level PM2.5 concentrations over a heavily polluted region in China. Sci. Total Environ. 2018, 618, 819–828. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Air Quality in Europe 2021: Sources and Emissions of Air Pollutants in Europe. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2021/sources-and-emissions-of-air (accessed on 9 January 2023).
- Timmermans, R.; van Pinxteren, D.; Kranenburg, R.; Hendriks, C.; Fomba, K.W.; Herrmann, H.; Schaap, M. Evaluation of modelled LOTOS-EUROS with observational based PM10 source attribution. Atmos. Environ. X 2022, 14, 100173. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Download of Air Quality Data. Available online: https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm (accessed on 17 September 2020).
- LAADS DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/ (accessed on 17 September 2020).
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating ground-level PM2.5 in China using satellite remote sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.-H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geo-Phys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Müller, I.; Erbertseder, T.; Taubenbock, H. Tropospheric NO2: Explorative analyses of spatial variability and impact factors. Remote Sens. Environ. 2022, 270, 112839. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- North, P.; Heckel, A. Algorithm Theoretical Basis Document—Annex C (SU-SLSTR). Copernicus Climate Change Service (C3S). Available online: http://datastore.copernicus-climate.eu/documents/satellite-aerosol-properties/C3S_D312b_Lot2.1.2.2_v1.1_201902_ATBD_AER_v1.1_and_annexes.zip (accessed on 13 May 2021).
- Torres, O.; Jethva, H.; Ahn, C.; Jaross, G.; Loyola, D.G. TROPOMI aerosol products: Evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020. Atmos. Meas. Tech. 2020, 13, 6789–6806. [Google Scholar] [CrossRef]
- Wan, Z. Collection-6 MODIS Land Surface Temperature Products Users’ Guide. ICESS, University of California, Santa Barbara. 2013. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD11_User_Guide_V61.pdf (accessed on 16 December 2022).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2015. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD13_User_Guide_V61.pdf (accessed on 16 December 2022).
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Gallego, F.J. A population density grid of the European Union. Popul. Environ. 2010, 31, 460–473. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Mei, L.; Strandgren, J.; Rozanov, V.; Vountas, M.; Burrows, J.P.; Wang, Y. A study of the impact of spatial resolution on the estimation of particle matter concentration from the aerosol optical depth retrieved from satellite observations. Int. J. Remote Sens. 2019, 40, 7084–7112. [Google Scholar] [CrossRef]
- Li, R.; Mei, X.; Chen, L.; Wang, Z.; Jing, Y.; Wei, L. Influence of Spatial Resolution and Retrieval Frequency on Applicability of Satellite-Predicted PM2.5 in Northern China. Remote Sens. 2020, 12, 736. [Google Scholar] [CrossRef] [Green Version]
- Munchak, L.A.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Holben, B.N.; Schafer, J.S.; Hostetler, C.A.; Ferrare, R.A. MODIS 3 km aerosol product: Applications over land in an urban/suburban region. Atmos. Meas. Tech. 2013, 6, 1747–1759. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116, 14986. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Popp, T.; C3S_312b_Lot2 Aerosol Team. Product User Guide and Specification—Aerosol Products. Copernicus Climate Change Service (C3S). Available online: http://datastore.copernicus-climate.eu/documents/satellite-aerosol-properties/C3S_D312b_Lot2.3.2.2_v1.1_201902_PUGS_AER_v1.1.pdf (accessed on 13 May 2021).
- Jing, Y.; Pan, L.; Sun, Y. Estimating PM2.5 concentrations in a central region of China using a three-stage model. Int. J. Digit. Earth 2023, 16, 578–592. [Google Scholar] [CrossRef]
- Pu, Q.; Yoo, E.-H. Ground PM2.5 prediction using imputed MAIAC AOD with uncertainty quantification. Environ. Pollut. 2021, 274, 116574. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, S.; Remy, S.; Chimot, J.; Ades, M.; Inness, A.; Flemming, J.; Kipling, Z.; Laszlo, I.; Benedetti, A.; Ribas, R.; et al. Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system. Atmos. Chem. Phys. 2022, 22, 14657–14692. [Google Scholar] [CrossRef]
- Reinermann, S.; Gessner, U.; Asam, S.; Kuenzer, C.; Dech, S. The Effect of Droughts on Vegetation Condition in Germany: An Analysis Based on Two Decades of Satellite Earth Observation Time Series and Crop Yield Statistics. Remote Sens. 2019, 11, 1783. [Google Scholar] [CrossRef] [Green Version]
- Brokamp, C.; Jandarov, R.; Hossain, M.; Ryan, P. Predicting daily urban fine particulate matter concentrations using a random forest model. Environ. Sci. Technol. 2018, 52, 4173–4179. [Google Scholar] [CrossRef]
- Reid, C.E.; Jerrett, M.; Petersen, M.L.; Pfister, G.G.; Morefield, P.E.; Tager, I.B.; Raffuse, S.M.; Balmes, J.R. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning. Environ. Sci. Technol. 2015, 49, 3887–3896. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, X. Evaluating the influence of land use and land cover change on fine particulate matter. Sci. Rep. 2021, 11, 17612. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.; Gunn, S. Identifying Feature Relevance Using a Random Forest. Lect. Notes Comput. Sci. 2006, 3940, 173–184. [Google Scholar] [CrossRef]
- Tsai, T.-C.; Jeng, Y.-J.; Chu, D.A.; Chen, J.-P.; Chang, S.-C. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos. Environ. 2011, 45, 4777–4788. [Google Scholar] [CrossRef]
- Song, C.H.; Yu, J.; Lee, D.; Lee, S.; Kim, H.S.; Han, K.M.; Jeon, M.; Park, S.; Im, J.; Park, S.-Y.; et al. Synergistic combination of information from ground observations, geostationary satellite, and air quality modeling towards improved PM2.5 predictability. Preprint 2022. [Google Scholar] [CrossRef]
Parameter Name | Acronym | Level | Aggregation/ Timestep | Source | Used |
---|---|---|---|---|---|
Albedo | A | - | daily 12 p.m. | (1) | no |
Boundary Layer Height | BLH | - | daily 12 p.m. | (1) | yes |
Convective Available Potential Energy | CAPE | - | daily 12 p.m. | (1) | yes |
Coordinates (Lon/Lat) | - | - | static | (2) | no |
Day of Year | DoY | - | daily | - | yes |
Dewpoint temperature | D | 2 m | daily 12 p.m. | (1) | yes |
Direct Solar Radiation | DSR | surface | daily 12 p.m. | (1) | yes |
Elevation | - | - | static | (2) | no |
Land Cover (CORINE) | CLC | - | static (2018) | (1) | no |
Land Cover B | SLC | - | static (2015–2017) | (4) | no |
Land Surface Temperature | LST | surface | daily mean | (5) | no |
Land Surface Temperature | LSTm | surface | monthly mean | (5) | yes |
Month | M | - | monthly | - | yes |
Normalized Difference Vegetation Index | NDVI | - | monthly | (5) | yes |
PM2.5 Emissions | E | surface | static (2018) | (6) | no |
Population Density | PD | - | static (2018) | (7) | no |
Relative Humidity | RH | 1000 hPa | daily 12 p.m. | (1) | yes |
Season | - | - | seasonal | - | no |
Surface Pressure | SP | surface | daily 12 p.m. | (1) | yes |
Surface Solar Radiation downward | SSR | surface | daily 12 p.m. | (1) | yes |
Surface Thermal Radiation downward | STR | surface | daily 12 p.m. | (1) | yes |
Temperature | T | 2 m | daily 12 p.m. | (1) | yes |
Total Precipitation | TP | surface | daily 12 p.m. | (1) | no |
Horizontal Wind Components | W | 10 m | daily 12 p.m. | (1) | yes |
MODIS-DT | MAIAC | SLSTR | TROPOMI | |
---|---|---|---|---|
AOD mean | 0.17 ± 0.08 | 0.13 ± 0.06 | 0.17 ± 0.08 | 0.22 ± 0.06 |
AOD covered area of study region | 99.4% | 99.0% | 99.0% | 98.2% |
mean daily coverage | 19.0% | 13.7% | 5.5% | 8.8% |
mean pixel counts | 54 | 46 | 31 | 26 |
collocations with in situ measurements | 22,560 | 19,200 | 7360 | 11,430 |
percentage of total potential collocations | 18.6% | 15.8% | 6.1% | 9.4% |
Dataset | Period | N | R2 | R | RMSE (μg/m3) | Bias (μg/m3) |
---|---|---|---|---|---|---|
MODIS-DT | 2018 | 22,560 | 0.74 | 0.87 | 4.36 | 0.11 |
Winter | 5708 | 0.75 | 0.87 | 4.36 | 0.12 | |
Spring | 5461 | 0.75 | 0.87 | 4.38 | 0.08 | |
Summer | 5414 | 0.73 | 0.86 | 4.35 | 0.14 | |
Autumn | 5977 | 0.74 | 0.87 | 4.36 | 0.12 | |
MAIAC | 2018 | 19,200 | 0.77 | 0.88 | 4.10 | 0.13 |
Winter | 4132 | 0.77 | 0.89 | 4.12 | 0.16 | |
Spring | 5806 | 0.78 | 0.89 | 4.09 | 0.10 | |
Summer | 4931 | 0.76 | 0.88 | 4.10 | 0.14 | |
Autumn | 4331 | 0.76 | 0.88 | 4.12 | 0.12 | |
SLSTR | 2018 | 7360 | 0.68 | 0.84 | 4.20 | 0.10 |
Winter | 1622 | 0.69 | 0.84 | 4.17 | 0.16 | |
Spring | 2032 | 0.70 | 0.85 | 4.18 | 0.06 | |
Summer | 1811 | 0.67 | 0.83 | 4.21 | 0.09 | |
Autumn | 1895 | 0.68 | 0.83 | 4.22 | 0.10 | |
TROPOMI | 2018 | 11,430 | 0.70 | 0.84 | 3.51 | 0.08 |
Winter | 2692 | 0.70 | 0.84 | 3.54 | 0.07 | |
Spring | 2687 | 0.71 | 0.85 | 3.47 | 0.10 | |
Summer | 3060 | 0.70 | 0.84 | 3.49 | 0.09 | |
Autumn | 2991 | 0.69 | 0.84 | 3.53 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handschuh, J.; Erbertseder, T.; Baier, F. Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach. Remote Sens. 2023, 15, 2064. https://doi.org/10.3390/rs15082064
Handschuh J, Erbertseder T, Baier F. Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach. Remote Sensing. 2023; 15(8):2064. https://doi.org/10.3390/rs15082064
Chicago/Turabian StyleHandschuh, Jana, Thilo Erbertseder, and Frank Baier. 2023. "Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach" Remote Sensing 15, no. 8: 2064. https://doi.org/10.3390/rs15082064
APA StyleHandschuh, J., Erbertseder, T., & Baier, F. (2023). Systematic Evaluation of Four Satellite AOD Datasets for Estimating PM2.5 Using a Random Forest Approach. Remote Sensing, 15(8), 2064. https://doi.org/10.3390/rs15082064