Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Soil Moisture Data
2.3. Remote Sensing Soil Moisture Data
2.4. Soil, Meteorological and Vegetation Datasets
2.5. Soil Moisture Analytical Relationship (SMAR) Model
2.6. Calibration and Validation of the SMAR Model
2.7. Regionalizing SMAR Model Parameters with the Random Forest Method
3. Results
3.1. Calibration of SMAR Parameters with a Genetic Algorithm
3.2. Regionalization of SMAR Parameters with the Random Forest Method
3.3. Root-Zone Soil Moisture Estimated by Regional SMAR
4. Discussion
4.1. Spatial and Temporal Heterogeneity of the Performance of the SMAR Model
4.2. Importance of Soil, Climatic and Vegetation Characteristics for Predicting SMAR Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, J.; Zhang, Y.; Guo, J.; Zhang, X.; Ma, N.; Wei, H.; Tang, Z. Predicting root zone soil moisture using observations at 2121 sites across China. Sci. Total Environ. 2022, 847, 157425. [Google Scholar] [CrossRef]
- Band, L.E.; Patterson, P.; Nemani, R.; Running, S.W. Forest ecosystem processes at the watershed scale-incorporating hillslope hydrology. Agric. For. Meteorol. 1993, 63, 93–126. [Google Scholar] [CrossRef] [Green Version]
- Pauwels, V.R.N.; Hoeben, R.; Verhoest, N.E.C.; De Troch, F.P. The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. J. Hydrol. 2001, 251, 88–102. [Google Scholar] [CrossRef]
- Yu, X.; Duffy, C.; Baldwin, D.C.; Lin, H. The role of macropores and multi-resolution soil survey datasets for distributed surface-subsurface flow modeling. J. Hydrol. 2014, 516, 97–106. [Google Scholar] [CrossRef]
- Bolten, J.D.; Crow, W.T.; Zhan, X.W.; Jackson, T.J.; Reynolds, C.A. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Bernai, R.R. Managing the risks of extreme events and disasters to advance climate change adaptation. Econ. Energy Environ. Policy 2013, 2, 101–112. [Google Scholar]
- Flores, A.N.; Entekhabi, D.; Bras, R.L. Application of a hillslope-scale soil moisture data assimilation system to military trafficability assessment. J. Terramechanics 2014, 51, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Bindlish, R.; Crow, W.T.; Jackson, T.J. Potential role of passive microwave remote sensing in improving flood forecasts. In Proceedings of the International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Bartsch, A.; Balzter, H.; George, C. The influence of regional surface soil moisture anomalies on forest fires in Siberia observed from satellites. Environ. Res. Lett. 2009, 4, 940–941. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.P.; Ma, J.R.; Guan, X.D.; Li, Y.; He, Y.L. Progress in Semi-arid Climate Change Studies in China. Adv. Atmos. Sci. 2019, 36, 922–937. [Google Scholar] [CrossRef]
- Gheybi, F.; Paridad, P.; Faridani, F.; Farid, A.; Pizarro, A.; Fiorentino, M.; Manfreda, S. Soil moisture monitoring in Iran by implementing satellite data into the root-zone SMAR model. Hydrology 2019, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Reichle, R.H.; De Lannoy, G.J.M.; Liu, Q.; Koster, R.D.; Kimball, S.J.; Crow, W.T.; Ardizzone, J.V.; Chakraborty, P.; Collins, D.W.; Conaty, A.L.; et al. Global assessment of the SMAP Level-4 surface and Root-Zone Soil Moisture product using assimilation diagnostics. J. Hydrometeorol. 2017, 18, 3217–3237. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E.A.H. Estimating root zone Soil Moisture across the Eastern United States with passive microwave satellite data and a simple hydrologic model. Remote Sens. 2019, 11, 2013. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, B.; Srinivasan, R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Denmead, O.T.; Shaw, R.H. Availability of soil water to plants as affected by Soil Moisture content and meteorological conditions 1. Agron. J. 1962, 54, 385–390. [Google Scholar] [CrossRef]
- Malone, R.W.; Ahuja, L.R.; Ma, L.; Wauchope, R.D.; Ma, Q.; Rojas, K.W. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: An overview. Pest Manag. Sci. 2010, 60, 205–221. [Google Scholar] [CrossRef]
- Wolfgang, W.; Guido, L.; Helmut, R. A Method for Estimating the Profile Soil Moisture Content from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar]
- Manfreda, S.; Fiorentino, M.; Samela, C.; Margiotta, M.R.; Moramarco, T. A physically based approach for the estimation of root-zone soil moisture from surface measurements: Application on the AMMA database. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Fang, X.; Cao, Y.; Yang, L.; Ren, L.; Chen, Y.; Zhang, X. Reconstruction of ESA CCI soil moisture based on DCT-PLS and in situ soil moisture. Hydrol. Res. 2022, 53, 1221–1236. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Farokhi, M.; Faridani, F.; Lasaponara, R.; Ansari, H.; Faridhosseini, A. Enhanced estimation of root zone soil moisture at 1 km resolution using SMAR model and MODIS-based downscaled AMSR2 soil moisture data. Sensors 2021, 21, 5211. [Google Scholar] [CrossRef]
- Faridani, F.; Farid, A.; Ansari, H.; Manfreda, S. Estimation of the root-zone soil moisture using passive microwave remote sensing and SMAR model. J. Irrig. Drain. Eng. 2017, 143, 9. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.B.; Tang, J.N.; Liang, H.R.; Dang, H.Z.; Li, W. Deep soil water infiltration and its dynamic variation in the shifting sandy land of typical deserts in China. Sci. China-Earth Sci. 2014, 57, 1816–1824. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, W.; Wu, G.-L. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 2019, 182, 104147. [Google Scholar] [CrossRef]
Site | a | b | sw2 | sc1 |
---|---|---|---|---|
Huolinguole | 0.054 | 0.357 | 0.351 | 0.367 |
Bayaertuhushuo | 0.079 | 0.188 | 0.093 | 0.355 |
Fuhe | 0.038 | 0.116 | 0.168 | 0.296 |
Zhalute | 0.036 | 0.239 | 0.179 | 0.322 |
Balinzuo | 0.072 | 0.231 | 0.237 | 0.411 |
Shebotu | 0.034 | 0.203 | 0.421 | 0.378 |
Kezuozhong | 0.041 | 0.188 | 0.309 | 0.526 |
Balinyou | 0.039 | 0.206 | 0.242 | 0.393 |
Linxi | 0.057 | 0.232 | 0.120 | 0.350 |
Keshiketeng | 0.192 | 0.096 | 0.172 | 0.352 |
Alukeerqin | 0.060 | 0.130 | 0.412 | 0.372 |
Kailu | 0.019 | 0.128 | 0.189 | 0.340 |
Tongliao | 0.043 | 0.270 | 0.257 | 0.412 |
Shuangliao | 0.037 | 0.129 | 0.353 | 0.483 |
Wengniute | 0.032 | 0.091 | 0.278 | 0.507 |
Gangzi | 0.059 | 0.244 | 0.184 | 0.393 |
Chifeng | 0.069 | 0.107 | 0.241 | 0.303 |
Naiman | 0.024 | 0.256 | 0.367 | 0.503 |
Aohan | 0.044 | 0.237 | 0.248 | 0.511 |
Kalaqin | 0.056 | 0.229 | 0.166 | 0.404 |
Balihan | 0.045 | 0.170 | 0.254 | 0.357 |
Ningcheng | 0.056 | 0.086 | 0.278 | 0.408 |
Station | Annual | Growing Season | Nongrowing Season | |||
---|---|---|---|---|---|---|
RMSE | Bias | RMSE | Bias | RMSE | Bias | |
Huolinguole | 0.122 | 0.104 | 0.140 | 0.125 | 0.086 | 0.070 |
Bayaertuhushuo | 0.063 | −0.055 | 0.059 | −0.049 | 0.068 | −0.065 |
Fuhe | 0.048 | 0.011 | 0.054 | 0.030 | 0.037 | −0.019 |
Zhalute | 0.063 | 0.015 | 0.072 | 0.033 | 0.045 | −0.015 |
Balinzuo | 0.040 | −0.003 | 0.039 | 0.016 | 0.041 | −0.030 |
Shebotu | 0.114 | 0.110 | 0.121 | 0.118 | 0.101 | 0.099 |
Kezuozhong | 0.084 | −0.054 | 0.067 | −0.030 | 0.106 | −0.092 |
Balinyou | 0.063 | 0.024 | 0.075 | 0.057 | 0.040 | −0.022 |
Linxi | 0.047 | −0.033 | 0.037 | −0.020 | 0.060 | −0.056 |
Keshiketeng | 0.077 | −0.059 | 0.051 | −0.037 | 0.105 | −0.093 |
Alukeerqin | 0.080 | 0.071 | 0.093 | 0.084 | 0.056 | 0.051 |
Kailu | 0.115 | 0.050 | 0.131 | 0.070 | 0.082 | 0.017 |
Tongliao | 0.060 | 0.022 | 0.071 | 0.036 | 0.033 | 0.000 |
Shuangliao | 0.076 | −0.049 | 0.073 | −0.038 | 0.081 | −0.067 |
Wengniute | 0.048 | −0.031 | 0.048 | −0.033 | 0.047 | −0.028 |
Gangzi | 0.034 | 0.000 | 0.034 | 0.016 | 0.032 | −0.027 |
Chifeng | 0.059 | 0.050 | 0.067 | 0.062 | 0.042 | 0.029 |
Naiman | 0.065 | 0.025 | 0.072 | 0.045 | 0.050 | −0.008 |
Aohan | 0.044 | −0.030 | 0.042 | −0.024 | 0.049 | −0.040 |
Kalaqin | 0.048 | −0.006 | 0.038 | 0.024 | 0.059 | −0.052 |
Balihan | 0.069 | 0.053 | 0.083 | 0.074 | 0.036 | 0.018 |
Ningcheng | 0.037 | −0.010 | 0.037 | −0.005 | 0.037 | −0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Fang, X.; Zhu, Q.; Jiang, S.; Tian, J.; Tian, Q.; Jin, J. Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data. Remote Sens. 2023, 15, 2003. https://doi.org/10.3390/rs15082003
Guo X, Fang X, Zhu Q, Jiang S, Tian J, Tian Q, Jin J. Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data. Remote Sensing. 2023; 15(8):2003. https://doi.org/10.3390/rs15082003
Chicago/Turabian StyleGuo, Xiaomeng, Xiuqin Fang, Qiuan Zhu, Shanhu Jiang, Jia Tian, Qingjiu Tian, and Jiaxin Jin. 2023. "Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data" Remote Sensing 15, no. 8: 2003. https://doi.org/10.3390/rs15082003
APA StyleGuo, X., Fang, X., Zhu, Q., Jiang, S., Tian, J., Tian, Q., & Jin, J. (2023). Estimation of Root-Zone Soil Moisture in Semi-Arid Areas Based on Remotely Sensed Data. Remote Sensing, 15(8), 2003. https://doi.org/10.3390/rs15082003