Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. DEMs
2.2.1. TanDEM-X 90 m DEM
2.2.2. SRTM
2.2.3. NASA DEM
2.2.4. ASTER GDEM
2.2.5. AW3D30
2.3. ICESat/GLAS
2.4. GlobeLand30 and FVCover Data
3. Methodology
3.1. Preprocessing of GCPs Data and DEMs
3.2. Quality Assessment of DEMs
3.3. Impact Factor Analysis with the Taguchi Model
4. Results
4.1. The Influence of Slope, Aspect, and Land Cover on DEM Accuracy
4.1.1. Influence of Slope and Aspect on DEM Accuracy
4.1.2. Influence of Landcover Types and Vegetation Coverage on DEM Accuracy
4.2. Significance Analysis of Slope Effect on DEM Quality after Excluding the Influence of Landcover Types
4.3. Quantitative Analysis of the Significance of Influencing Factors
5. Discussion
5.1. Penetration of Different Data
5.2. The Relationship between Landcover Types and DEM Quality
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wolock, D.M.; Price, C.V. Effects of digital elevation model map scale and data resolution on a topography-based watershed model. Water Resour. Res. 1994, 30, 3041–3052. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The new global DEM takes shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M. NASADEM global elevation model: Methods and progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM Version 2. In Proceedings of the International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar]
- Takaku, J.; Tadono, T.; Doutsu, M.; Ohgushi, F.; Kai, H. Updates of ‘aw3d30’ alos global digital surface model with other open access datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 183–189. [Google Scholar] [CrossRef]
- del Rosario Gonzalez-Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3. 0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 2020, 237, 111509. [Google Scholar] [CrossRef]
- Carrera-Hernandez, J.J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens. Environ. 2021, 261, 112474. [Google Scholar] [CrossRef]
- Podobnikar, T. Production of integrated digital terrain model from multiple datasets of different quality. Int. J. Geogr. Inf. Sci. 2005, 19, 69–89. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.-P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.F.; Garnier, J. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Zhang, L.; Zheng, X.; Zhang, F.; Yuan, Q. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. Photogramm. Remote Sens. 2017, 123, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Ji, S. Accuracy evaluation and improvement of common DEM in Hubei Region based on ICESat/GLAS data. Earth Sci. Inform. 2021, 15, 221–231. [Google Scholar] [CrossRef]
- Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. Int. J. Digit. Earth 2019, 12, 500–524. [Google Scholar] [CrossRef]
- Nardi, F.; Annis, A.; Di Baldassarre, G.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Sci. Data 2019, 6, 180309. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D. Validation of the ASTER global digital elevation model version 3 over the conterminous United States. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 143. [Google Scholar] [CrossRef] [Green Version]
- Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Generation of the 30 M-mesh global digital surface model by ALOS PRISM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, J.; Yan, B.; Yue, L.; Wang, L. Global DEMs vary from one to another: An evaluation of newly released Copernicus, NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data. Int. J. Digit. Earth 2022, 15, 1149–1168. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, H.; Bailly, J.-S.; Baghdadi, N.; Lemarquand, N. Improving the assessment of ICESat water altimetry accuracy accounting for autocorrelation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xie, H.; Tong, X.; Tang, H.; Liu, S.; Jin, Y.; Wang, C.; Ye, Z. High-Accuracy Laser Altimetry Global Elevation Control Point Dataset for Satellite Topographic Mapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and applications of GlobeLand30: A review. ISPRS Int. J. Geo-Inf. 2017, 6, 230. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Nadi, S.; Shojaei, D.; Ghiasi, Y. Accuracy assessment of DEMs in different topographic complexity based on an optimum number of GCP formulation and error propagation analysis. J. Surv. Eng. 2020, 146, 04019019. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Taguchi, G. Quality engineering in Japan. Commun. Stat.-Theory Methods 1985, 14, 2785–2801. [Google Scholar] [CrossRef]
- Freddi, A.; Salmon, M. Design Principles and Methodologies: From Conceptualization to First Prototyping with Examples and Case Studies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zhang, F.; Wang, M.; Yang, M. Successful application of the Taguchi method to simulated soil erosion experiments at the slope scale under various conditions. Catena 2021, 196, 104835. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Moosavi, V.; Karami, A.; Behnia, N. Soil erosion assessment and prioritization of affecting factors at plot scale using the Taguchi method. J. Hydrol. 2012, 448, 174–180. [Google Scholar] [CrossRef]
- Gdulová, K.; Marešová, J.; Moudrý, V. Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment. Remote Sens. Environ. 2020, 241, 111724. [Google Scholar] [CrossRef]
DEM | Primary Source | Resolution | Producer | Datum Plain/Vertical | Vertical Accuracy | Acquired |
---|---|---|---|---|---|---|
TanDEM-XDEM | X band SAR | 3″ (~90 m) | DLR | WGS84/WGS84 | <10 m (LE90) [16] | 2011–2015 |
SRTM (v3) | C band SAR | 1″ (~30 m) | NASA | WGS84/EGM96 | <16 m (LE90) https://www2.jpl.nasa.gov/srtm/ (accessed on 1 April 2023) | 1999–2000 |
NASA DEM | Reprocessed C band SAR | 1″ (~30 m) | NASA | WGS84/EGM96 | Not reported | 1999–2000 |
ASTER GDEM (v3) | Stereo NIR imagery | 1″ (~30 m) | NASA/METI | WGS84/EGM96 | ~8.5 m (RMSE) [17] | 2000–2008 |
ALOS World 3D AW3D30 | Stereo pan imagery | 1″ (~30 m) | JAXA | WGS84/EGM96 | ~4.4 m (RMSE) [18] | 2006–2011 |
Factor | Description | Levels 1 | Levels 2 | Levels 3 | Levels 4 |
---|---|---|---|---|---|
A | GlobeLand30 | cropland | forest | grassland | shrubland |
B | Slope | 0–10° | 10–20° | 20–30° | 30–45° |
C | FVCover | 0–0.3 | 0.3–0.5 | 0.5–0.7 | 0.7–1 |
D | Aspect | north | east | south | west |
DEM | MED (m) | NMAD (m) | MAE (m) | ME (m) | STD (m) | RMSE (m) |
---|---|---|---|---|---|---|
TanDEM-X90 | 0.97 | 10.54 | 9.76 | 1.21 | 13.12 | 13.30 |
SRTM | −0.28 | 5.41 | 5.45 | 0.44 | 8.01 | 8.03 |
NASA DEM | −0.19 | 5.37 | 5.41 | 0.42 | 7.97 | 7.98 |
ASTER GDEM | 1.08 | 11.69 | 10.22 | 1.36 | 13.45 | 13.48 |
AW3D30 | 1.37 | 4.46 | 4.77 | 1.96 | 6.70 | 7.26 |
NO. | L16 (Combination of Different Levels) | Influence Factor | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||
1 | 1 | 1 | 1 | 1 | Cropland | 0–10° | 0–0.3 | North |
2 | 1 | 2 | 2 | 2 | 10–20° | 0.3–0.5 | East | |
3 | 1 | 3 | 3 | 3 | 20–30° | 0.5–0.7 | South | |
4 | 1 | 4 | 4 | 4 | 30–45° | 0.7–1 | West | |
5 | 2 | 1 | 2 | 3 | Forest | 0–10° | 0.3–0.5 | South |
6 | 2 | 2 | 1 | 4 | 10–20° | 0–0.3 | West | |
7 | 2 | 3 | 4 | 1 | 20–30° | 0.7–1 | North | |
8 | 2 | 4 | 3 | 2 | 30–45° | 0.5–0.7 | East | |
9 | 3 | 1 | 3 | 4 | Grassland | 0–10° | 0.5–0.7 | West |
10 | 3 | 2 | 4 | 3 | 10–20° | 0.7–1 | South | |
11 | 3 | 3 | 1 | 2 | 20–30° | 0–0.3 | East | |
12 | 3 | 4 | 2 | 1 | 30–45° | 0.3–0.5 | North | |
13 | 4 | 1 | 4 | 2 | Shrubland | 0–10° | 0.7–1 | East |
14 | 4 | 2 | 3 | 1 | 10–20° | 0.5–0.7 | North | |
15 | 4 | 3 | 2 | 4 | 20–30° | 0.3–0.5 | West | |
16 | 4 | 4 | 1 | 3 | 30–45° | 0–0.3 | South |
NO. | MAE (m) | S/N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TanDEM-X90 | SRTM | NASA | ASTER GDEM | AW3D30 | TanDEM-X90 | SRTM | NASA | ASTER GDEM | AW3D30 | |
1 | 2.93 | 2.04 | 1.94 | 6.73 | 2.42 | 9.34 | 6.18 | 5.74 | 16.56 | 7.68 |
2 | 7.82 | 3.65 | 3.92 | 8.99 | 2.97 | 17.87 | 11.24 | 11.86 | 19.07 | 9.44 |
3 | 12.18 | 5.39 | 5.36 | 9.57 | 4.05 | 21.71 | 14.63 | 14.58 | 19.61 | 12.16 |
4 | 19.70 | 7.83 | 8.90 | 14.14 | 6.45 | 25.88 | 17.87 | 18.93 | 22.79 | 16.20 |
5 | 5.21 | 4.22 | 4.13 | 8.46 | 2.45 | 14.33 | 12.51 | 12.32 | 18.55 | 7.79 |
6 | 8.18 | 4.53 | 4.73 | 7.18 | 2.96 | 18.25 | 13.12 | 13.51 | 17.13 | 9.41 |
7 | 13.67 | 6.60 | 6.68 | 10.71 | 6.66 | 22.71 | 16.39 | 16.50 | 20.60 | 16.48 |
8 | 17.78 | 9.25 | 9.53 | 13.79 | 7.23 | 25.00 | 19.32 | 19.58 | 23.01 | 17.18 |
9 | 4.60 | 3.21 | 3.23 | 8.61 | 1.94 | 13.26 | 10.13 | 10.19 | 18.70 | 5.74 |
10 | 9.22 | 5.30 | 5.12 | 9.58 | 3.66 | 19.30 | 14.48 | 14.18 | 19.63 | 11.28 |
11 | 13.35 | 5.50 | 6.23 | 11.31 | 3.47 | 22.51 | 14.80 | 15.88 | 21.07 | 10.81 |
12 | 18.35 | 8.91 | 8.84 | 13.62 | 10.64 | 25.27 | 19.00 | 18.98 | 22.68 | 20.54 |
13 | 5.72 | 4.13 | 4.15 | 9.77 | 2.88 | 15.15 | 12.31 | 12.37 | 19.80 | 9.19 |
14 | 8.92 | 4.30 | 4.28 | 9.48 | 3.50 | 19.01 | 12.66 | 12.63 | 19.54 | 10.87 |
15 | 12.81 | 5.45 | 5.34 | 9.23 | 4.09 | 22.15 | 14.73 | 14.55 | 19.30 | 12.23 |
16 | 12.56 | 6.15 | 6.78 | 12.41 | 3.90 | 23.98 | 16.78 | 16.63 | 21.87 | 13.83 |
Factor | PC (%) | ||||
---|---|---|---|---|---|
TanDEM-X90 | SRTM | NASADEM | ASTER GDEM | AW3D30 | |
A (GlobaLand30) | 0.9 | 8.3 | 5.9 | 1.9 | 4.2 |
B (slope) | 89.3 | 80.8 | 85.0 | 82.7 | 64.9 |
C (FVCover) | 4.9 | 6.5 | 5.2 | 5.1 | 10.5 |
D (aspect) | 0.9 | 0.1 | 0.6 | 2.1 | 11.4 |
Error | 3.6 | 4.3 | 3.4 | 8.2 | 9.0 |
Factor | PC (%) | ||||
---|---|---|---|---|---|
TanDEM-X90 | SRTM | NASADEM | ASTER GDEM | AW3D30 | |
A (GlobaLand30) | 22.0 | 22.6 | 14.0 | 31.3 | 15.9 |
B (slope) | 52.9 | 31.7 | 33.6 | 9.2 | 25.1 |
C (FVCover) | 20.4 | 23.3 | 18.5 | 44.8 | 13.8 |
D (aspect) | 2.5 | 20.8 | 25.1 | 1.8 | 23.7 |
Error | 2.2 | 1.6 | 8.9 | 12.9 | 21.5 |
A + C | 42.4 | 45.9 | 32.5 | 76.1 | 29.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yin, X.; Tang, B.-H.; Yang, M. Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China. Remote Sens. 2023, 15, 1952. https://doi.org/10.3390/rs15071952
Li M, Yin X, Tang B-H, Yang M. Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China. Remote Sensing. 2023; 15(7):1952. https://doi.org/10.3390/rs15071952
Chicago/Turabian StyleLi, Menghua, Xiebing Yin, Bo-Hui Tang, and Mengshi Yang. 2023. "Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China" Remote Sensing 15, no. 7: 1952. https://doi.org/10.3390/rs15071952
APA StyleLi, M., Yin, X., Tang, B. -H., & Yang, M. (2023). Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China. Remote Sensing, 15(7), 1952. https://doi.org/10.3390/rs15071952