Decline of Late Spring and Summer Snow Cover in the Scottish Highlands from 1984 to 2022: A Landsat Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Imagery
2.3. Processing of Landsat Imagery
2.3.1. Computation of NDSI
2.3.2. Calibration and Thresholds
2.3.3. Computation of Snow Cover Values
2.4. Accuracy Assessment
2.5. Climate Data
3. Results
3.1. Site Snowmelt Curves
3.2. Accuracy Estimates and Validation Tests
3.2.1. Accuracy Estimate Using Sentinel-2 Imagery
3.2.2. Comparison with Snow Patch Snow Survey
3.3. Snow Cover Time Series
3.3.1. Decline in Snow Cover from 1984 to 2022
3.3.2. Impact of Cloud Cover and Landsat Malfunction
3.4. Impact of Climatic Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evans, B.M.; Walker, D.A.; Benson, C.S.; Nordstrand, E.A.; Petersen, G.W. Spatial interrelationships between terrain, snow distribution and vegetation patterns at an arctic foothills site in Alaska. Ecography 1989, 12, 270–278. [Google Scholar] [CrossRef]
- Moriana-Armendariz, M.; Nilsen, L.; Cooper, E.J. Natural variation in snow depth and snow melt timing in the High Arctic have implications for soil and plant nutrient status and vegetation composition. Arct. Sci. 2022, 8, 767–785. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Bradley, R.S.; Blangy, S.; Bulygina, O.N.; Christensen, T.R.; et al. Multiple Effects of Changes in Arctic Snow Cover. AMBIO 2011, 40, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.J.; Dullinger, S.; Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 2011, 180, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Bokhorst, S.; Bjerke, J.W.; Davey, M.P.; Taulavuori, K.; Taulavuori, E.; Laine, K.; Callaghan, T.V.; Phoenix, G.K. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Physiol. Plant. 2010, 140, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Bjerke, J.W.; Bokhorst, S.; Zielke, M.; Callaghan, T.V.; Bowles, F.W.; Phoenix, G.K. Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. J. Ecol. 2011, 99, 1481–1488. [Google Scholar] [CrossRef]
- Wipf, S.; Stoeckli, V.; Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Chang. 2009, 94, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Sydes, C. Can we protect threatened Scottish arctic-alpine higher plants? Plant Ecol. Divers. 2008, 1, 339–349. [Google Scholar] [CrossRef]
- Billings, W.D.; Mooney, H.A. The ecology of arctic and alpine plants. Biol. Rev. 1968, 43, 481–529. [Google Scholar] [CrossRef]
- Rothero, G.P. Bryophyte-Dominated Snow-beds in the Scottish Highlands; University of Glasgow: Glasgow, UK, 1991. [Google Scholar]
- Watson, A.; Davison, R.W.; French, D.D. Summer Snow Patches and Climate in Northeast Scotland, U.K. Arct. Alp. Res. 1994, 26, 141. [Google Scholar] [CrossRef]
- Woo, M.-K.; Young, K.L. Disappearing semi-permanent snow in the High Arctic and its consequences. J. Glaciol. 2014, 60, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Tussetschläger, H.; Brynjólfsson, S.; Brynjólfsson, S.; Nagler, T.; Sailer, R.; Stötter, J.; Wuite, J. Perennial snow patch detection based on remote sensing data on Tröllaskagi Peninsula, northern Iceland. Jökull 2020, 69, 103–128. [Google Scholar] [CrossRef]
- Green, K.; Pickering, C.M. The Decline of Snowpatches in the Snowy Mountains of Australia: Importance of Climate Warming, Variable Snow, and Wind. Arctic Antarct. Alp. Res. 2009, 41, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Kivinen, S.; Kaarlejärvi, E.; Jylhä, K.; Räisänen, J. Spatiotemporal distribution of threatened high-latitude snowbed and snow patch habitats in warming climate. Environ. Res. Lett. 2012, 7, 034024. [Google Scholar] [CrossRef] [Green Version]
- Rivington, M.; Spencer, M.; Gimona, A.; Artz, R.; Wardell-Johnson, D.; Ball, J. Snow Cover and Climate Change in the Cairngorms National Park: Summary Assessment; ClimateXChange: Cairngorms, UK, 2019; 31p. [Google Scholar]
- Trivedi, M.R.; Browne, M.K.; Berry, P.M.; Dawson, T.P.; Morecroft, M.D. Projecting Climate Change Impacts on Mountain Snow Cover in Central Scotland from Historical Patterns. Arctic Antarct. Alp. Res. 2007, 39, 488–499. [Google Scholar] [CrossRef]
- UK Meteorological Office. UKCP18 UK Climate Projections: Headline Findings. Version 2. 2019. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp-headline-findings-v2.pdf (accessed on 26 November 2022).
- UKCP18. UKCP18 Factsheet: Snow. UK Meteorological Office. 2019. Available online: https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-factsheet-snow.pdf (accessed on 26 November 2022).
- Johnson, S. A Journey to the Western Islands of Scotland. 1775. Available online: https://www.gutenberg.org/files/2064/2064-h/2064-h.htm (accessed on 28 November 2022).
- Bell, V.A.; Moore, R.J. An elevation-dependent snowmelt model for upland Britain. Hydrol. Process. 1999, 13, 1887–1903. [Google Scholar] [CrossRef]
- Rodwell, J.S.; Joint Nature Conservation Committee (GB). National Vegetation Classification: Users’ Handbook; Joint Nature Conservation Committee: Peterborough, UK, 2006. [Google Scholar]
- Shaw, P.; Thompson, D.B. The Nature of the Cairngorms: Diversity in a Changing Environment; The Stationery Office: London, UK, 2006. [Google Scholar]
- Mordaunt, C.H. Association between Weather Conditions, Snow-Lie and Snowbed Vegetation. 2006. Available online: http://www.storre.stir.ac.uk/bitstream/1893/2213/1/Mordaunt%20%281998%29%20-%20Association%20Between%20Weather%20Conditions%2C%20Snow-Lie%20and%20Snowbed%20Vegetation.pdf (accessed on 24 March 2023).
- Thompson, D.B.A.; Brown, A. Biodiversity in montane Britain: Habitat variation, vegetation diversity and some objectives for conservation. Biodivers. Conserv. 1992, 1, 179–208. [Google Scholar] [CrossRef]
- Rosvold, J. Perennial ice and snow-covered land as important ecosystems for birds and mammals. J. Biogeogr. 2016, 43, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Antor, R.J. The Importance of Arthropod Fallout on Snow Patches for the Foraging of High-Alpine Birds. J. Avian Biol. 1995, 26, 81–85. [Google Scholar] [CrossRef]
- Resano-Mayor, J.; Korner-Nievergelt, F.; Vignali, S.; Horrenberger, N.; Barras, A.G.; Braunisch, V.; Pernollet, C.A.; Arlettaz, R. Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: Implications for species persistence in the face of climate change. Biodivers. Conserv. 2019, 28, 2669–2685. [Google Scholar] [CrossRef]
- Cameron, I.; Watson, A.; Duncan, D. Twenty one Scottish snow patches survive until winter 2014/2015. Weather 2015, 70, 314–316. [Google Scholar] [CrossRef] [Green Version]
- Cameron, I.; Watson, A. One Scottish snow patch survives until winter 2018/2019. Weather 2019, 74, 253–255. [Google Scholar] [CrossRef]
- Meier, M.F. Application of remote-sensing techniques to the study of seasonal snow cover. J. Glaciol. 1975, 15, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.; Matson, M. Satellite observations of snowcover in the Sierra Nevadas during the great California drought. Remote Sens. Environ. 1977, 6, 327–334. [Google Scholar] [CrossRef]
- Lopez, P.; Sirguey, P.; Arnaud, Y.; Pouyaud, B.; Chevallier, P. Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Glob. Planet. Chang. 2008, 61, 103–116. [Google Scholar] [CrossRef]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal Dynamics of Snowline Altitude and Their Responses to Climate Change in the Tienshan Mountains, Central Asia, during 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. Adv. Space Res. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Garðarsson, S.M.; Sveinsson, G.B. Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 3021–3036. [Google Scholar] [CrossRef] [Green Version]
- Macander, M.J.; Swingley, C.S.; Joly, K.; Raynolds, M.K. Landsat-based snow persistence map for northwest Alaska. Remote Sens. Environ. 2015, 163, 23–31. [Google Scholar] [CrossRef]
- Rosenthal, W.; Dozier, J. Automated Mapping of Montane Snow Cover at Subpixel Resolution from the Landsat Thematic Mapper. Water Resour. Res. 1996, 32, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Selkowitz, D.J.; Forster, R.R. Automated mapping of persistent ice and snow cover across the western U.S. with Landsat. ISPRS J. Photogramm. Remote Sens. 2016, 117, 126–140. [Google Scholar] [CrossRef]
- Hu, Z.; Dietz, A.J.; Kuenzer, C. Deriving Regional Snow Line Dynamics during the Ablation Seasons 1984–2018 in European Mountains. Remote Sens. 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-H.; Lee, M.-J.; Jung, H.-S. Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years. J. Atmos. Sol.-Terr. Phys. 2016, 143, 37–46. [Google Scholar] [CrossRef]
- McFadden, E.M.; Ramage, J.; Rodbell, D.T. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Cordero, R.R.; Asencio, V.; Feron, S.; Damiani, A.; Llanillo, P.J.; Sepulveda, E.; Jorquera, J.; Carrasco, J.; Casassa, G. Dry-Season Snow Cover Losses in the Andes (18°–40°S) driven by Changes in Large-Scale Climate Modes. Sci. Rep. 2019, 9, 16945. [Google Scholar] [CrossRef] [Green Version]
- Alder, B.; Beag, A. Site of Special Scientific Interest, Highland (Badenoch and Strathspey). Available online: https://apps.snh.gov.uk/sitelink-api/v1/sites/176/documents/1 (accessed on 26 November 2022).
- Nevis, B. Site of Special Scientific Interest, Highland (Lochaber). Available online: https://apps.snh.gov.uk/sitelink-api/v1/sites/192/documents/1 (accessed on 26 November 2022).
- Hills, F. Site of Special Scientific Interest. Available online: https://apps.snh.gov.uk/sitelink-api/v1/sites/627/documents/3 (accessed on 26 November 2022).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollis, D.; McCarthy, M.; Kendon, M.; Legg, T.; Simpson, I. HadUK-Grid—A new UK dataset of gridded climate observations. Geosci. Data J. 2019, 6, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Hao, X.; Wang, J.; Luo, S.; Shao, D.; Li, H.; Feng, T.; Zhao, H. Snow Cover Phenology Change and Response to Climate in China during 2000–2020. Remote Sens. 2022, 14, 3936. [Google Scholar] [CrossRef]
- Ali, S.; Cheema, M.; Waqas, M.; Waseem, M.; Awan, U.; Khaliq, T. Changes in Snow Cover Dynamics over the Indus Basin: Evidences from 2008 to 2018 MODIS NDSI Trends Analysis. Remote Sens. 2020, 12, 2782. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wang, J.; Jiang, Z.-Y.; Li, H.-Y.; Hao, X.-H. An Effective Method for Snow-Cover Mapping of Dense Coniferous Forests in the Upper Heihe River Basin Using Landsat Operational Land Imager Data. Remote Sens. 2015, 7, 17246–17257. [Google Scholar] [CrossRef] [Green Version]
- Negi, H.S.; Kulkarni, A.V.; Semwal, B.S. Estimation of snow cover distribution in Beas basin, Indian Himalaya using satellite data and ground measurements. J. Earth Syst. Sci. 2009, 118, 525–538. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Srinivasulu, J.; Manjul, S.S. Field based spectral reflectance studies to develop NDSI method for snow cover monitoring. J. Indian Soc. Remote Sens. 2002, 30, 73–80. [Google Scholar] [CrossRef]
- Gupta, R.P.; Haritashya, U.K.; Singh, P. Mapping dry/wet snow cover in the Indian Himalayas using IRS multispectral imagery. Remote Sens. Environ. 2005, 97, 458–469. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Mancino, G.; Ferrara, A.; Padula, A.; Nolè, A. Cross-Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote Sens. 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin & Co. Ltd.: London, UK, 1948. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Blain, G.C. Removing the influence of the serial correlation on the Mann-Kendall test. Rev. Bras. Meteorol. 2014, 29, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Mora, C.; Jiménez, J.J.; Pina, P.; Catalão, J.; Vieira, G. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: An application in the maritime Antarctic. Cryosphere 2017, 11, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Pottie, J.; Rae, S.; Duncan, D. Melting of all snow patches in the UK by late October 1996. Weather 1997, 52, 161. [Google Scholar]
- Watson, A.; Pottie, J.; Duncan, D. No Scottish snow patches survive through the summer of 2003. Weather 2004, 59, 125–126. [Google Scholar] [CrossRef]
- Watson, A. Scottish snow patches disappear in Autumn 2006. Weather 2006, 61, 326. [Google Scholar]
- Cameron, I.; Watson, A. No Scottish snow patches survive until winter 2017/2018. Weather 2018, 73, 123–125. [Google Scholar] [CrossRef]
- Ackroyd, C.; Skiles, S.M.; Rittger, K.; Meyer, J. Trends in Snow Cover Duration Across River Basins in High Mountain Asia from Daily Gap-Filled MODIS Fractional Snow Covered Area. Front. Earth Sci. 2021, 9, 713145. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal Variation of Snow Cover in Tianshan Mountains, Central Asia, Based on Cloud-Free MODIS Fractional Snow Cover Product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Ding, J.; Wang, J.; Zhang, J.; Zhang, Z. Temporal and spatial variability in snow cover over the Xinjiang Uygur Autonomous Region, China, from 2001 to 2015. PeerJ 2020, 8, e8861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint Nature Conservation Committee (JNCC). Conservation Designations for UK Taxa 2022. Available online: https://hub.jncc.gov.uk/assets/478f7160-967b-4366-acdf-8941fd33850b (accessed on 25 November 2022).
- Bosanquet, S.D.S.; Genney, D.R.; Cox, J.H.S. Guidelines for the Selection of Biological SSSIs; Part 2: Detailed Guidelines for Habitats and Species Groups; Chapter 12 Bryophytes; Joint Nature Conservation Committee: Peterborough, UK, 2018. [Google Scholar]
- Wildlife and Countryside Act 1981. Available online: https://www.legislation.gov.uk/ukpga/1981/69 (accessed on 25 November 2022).
- Vanneste, T.; Michelsen, O.; Graae, B.J.; Kyrkjeeide, M.O.; Holien, H.; Hassel, K.; Lindmo, S.; Kapás, R.E.; De Frenne, P. Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 2017, 32, 579–593. [Google Scholar] [CrossRef]
Bands | Landsat 5/7 Wavelength (µm) | Landsat 8/9 Wavelength (µm) |
---|---|---|
Blue | 0.45–0.52 | 0.45–0.51 |
Green | 0.52–0.6 | 0.53–0.59 |
Red | 0.63–0.69 | 0.64–0.67 |
Near-Infrared (NIR) | 0.76–0.9 | 0.85–0.88 |
Infrared (SWIR) | 1.55–1.75 | 1.57–1.65 |
Infrared (SWIR) | 2.08–2.35 | 2.11–2.29 |
Variable | Data Used | Months | Description | Units |
---|---|---|---|---|
Winter temperature | tas (monthly) | Nov., Dec., Jan., Feb., March | Summed mean daily air temperature | Celsius |
Winter snowfall | rainfall (monthly) tasmax (daily) * rainfall (daily) * | Nov. *, Dec., Jan., Feb., March * | Summed total snowfall | mm |
Winter wind | sfcWind (monthly) | Nov., Dec., Jan., Feb., March | Summed mean wind speed at 10 m above ground | knots |
Summer temperature | tas (monthly) | May, June, July, Aug., Sep. | Summed mean daily air temperature | Celsius |
Summer precipitation | rainfall (monthly) | May, June, July, Aug., Sep. | Summed total precipitation | mm |
Summer sunshine | sun (monthly) | May, June, July, Aug., Sep. | Summed duration of bright sunshine | hours |
April temperature | tas (monthly) | April | Mean daily air temperature | Celsius |
April thaw days | tasmax (daily) | April | Number of days with max temperature over 3 Celsius | Days |
April snowfall | tasmax (daily) rainfall (daily) | April | Total snowfall | Celsius |
Landsat | ||||
---|---|---|---|---|
Sentinel-2 | Snow | No snow | Total | |
Snow | 552 | 170 | 722 | |
No snow | 0 | 394,146 | 394,146 | |
Total | 552 | 394,316 | 394,868 |
Number | Landsat 7/8 | Year | Sentinel Date | Sentinel Granule | Landsat Date | Landsat Path/Row | Valid Pixels | User (%) | Prod.(%) |
---|---|---|---|---|---|---|---|---|---|
1 | 8 | 2016 | 06/02 | VVU | 06/01 | 207/020 | 95,916 | 99.8 | 93.2 |
2 | 8 | 2016 | 06/02 | VVJ | 06/03 | 205/020 | 44,712 | 100 | 91.2 |
3 | 8 | 2018 | 06/25 | VVJ | 06/25 | 205/020 | 394,868 | 100 | 76.5 |
4 | 8 | 2019 | 06/27 | VVU | 06/26 | 207/020 | 113,848 | 97.9 | 63.6 |
5 | 8 | 2019 | 06/27 | VVJ | 06/28 | 205/020 | 394,871 | 99.8 | 75.0 |
6 | 8 | 2021 | 07/01 | VVU | 07/01 | 207/020 | 49,729 | 99.5 | 78.2 |
7 | 8 | 2022 | 06/04 | VVJ | 06/04 | 205/020 | 384,916 | 99.5 | 84.7 |
8 | 7 | 2018 | 06/25 | VVJ | 06/24 | 206/020 | 290,618 | 100 | 67.2 |
9 | 7 | 2019 | 06/27 | VVJ | 06/27 | 206/020 | 281,764 | 99.5 | 64.4 |
10 | 7 | 2021 | 07/01 | VVU | 07/02 | 206/020 | 28,902 | 100 | 53.5 |
Total | --- | --- | --- | --- | --- | --- | 2,080,144 | 99.8 | 87.0 |
Variable | Coefficient | 97.5% C.I.s: Lower Bound | 97.5% C.I.s: Upper Bound | p-Value |
---|---|---|---|---|
Winter temperature | −0.06 | −0.09 | −0.03 | <0.001 |
Winter snowfall | 0.0016 | 0.001 | 0.002 | <0.001 |
April temperature | −0.14 | −0.23 | −0.05 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spracklen, B.D.; Spracklen, D.V. Decline of Late Spring and Summer Snow Cover in the Scottish Highlands from 1984 to 2022: A Landsat Time Series. Remote Sens. 2023, 15, 1944. https://doi.org/10.3390/rs15071944
Spracklen BD, Spracklen DV. Decline of Late Spring and Summer Snow Cover in the Scottish Highlands from 1984 to 2022: A Landsat Time Series. Remote Sensing. 2023; 15(7):1944. https://doi.org/10.3390/rs15071944
Chicago/Turabian StyleSpracklen, Benedict D., and Dominick V. Spracklen. 2023. "Decline of Late Spring and Summer Snow Cover in the Scottish Highlands from 1984 to 2022: A Landsat Time Series" Remote Sensing 15, no. 7: 1944. https://doi.org/10.3390/rs15071944
APA StyleSpracklen, B. D., & Spracklen, D. V. (2023). Decline of Late Spring and Summer Snow Cover in the Scottish Highlands from 1984 to 2022: A Landsat Time Series. Remote Sensing, 15(7), 1944. https://doi.org/10.3390/rs15071944