A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment
Abstract
:1. Introduction
2. The Role of Geospatial Data in Earthquake Studies
2.1. GIS Data
- Evaluating short- and long-term reconstruction and recovery processes.
- Ranking the stages of search-and-rescue operations.
- Determining the post-disaster assembly areas, emergency management operations centers, and other incidental services aimed at minimizing the disastrous consequences.
- Analyzing service area of hospitals and fire stations, which play a key role in providing the quickest response.
- Preparing the strategic databases for pharmacies and medical supplies.
- Predicting the aftermath of earthquakes, such as tsunamis and fires, which helps to recognize the possible affected areas via buffer analysis.
- Utilizing ArcView 3D Analyst, which can be used to prepare a 3D view of the buildings. Earthquake-vulnerable buildings will be defined (based on a specific number of floors, materials, commercial or residential use, etc.).
2.2. Optical Data
2.3. Thermal Infrared (TIR) Data
2.4. Optical Data
2.4.1. Passive Microwave
2.4.2. Active Microwave
RADAR Data
LiDAR Data
2.5. GNSS
2.6. Data Fusion
2.7. Time-Series Data
3. The Role of Remote Sensing at Different Stages of an Earthquake
3.1. Pre-Earthquake Studies
3.1.1. Thermal Anomaly Studies
3.1.2. Electromagnetic Signal Anomaly Studies
3.1.3. Crustal Deformation Studies
3.1.4. Gravity Anomaly Studies
- Thermal remote sensing is one of the most frequently used techniques in pre-seismic monitoring;
- Remote sensing of electromagnetic pulse and variations in their patterns requires a complex mechanism with high-precision control performance;
- InSAR and GNSS enable the measurement of pre-seismic movements of deformation, producing meaningful results;
- Remote sensing of gravitational field anomalies remains a lesser-used tool due to the difficulties in detecting and isolating gravitational field anomalies.
3.2. Post-Earthquake Studies
3.2.1. Post-Earthquake Rescue and Relief Activities
3.2.2. Damage Assessment
- An interpretation technique applied to a dataset after an earthquake;
- Change detection using pre- and post-earthquake images with the same sensor type and measurement geometry;
- A change detection method using pre- and post-seismic data from different sensor types;
- Data fusion with already-existing pre-seismic GIS layers and new in situ information (e.g., from seismic sensors).
4. The Application of RS in Earthquake Analysis
- Experimental or numerical approaches, such as the Analytic Hierarchy Process (AHP) and the Analytical Network Process (ANP);
- Individual analytical techniques, such as Artificial Neural Networks (ANNs), Multiple Logistic Regression (LR), Support Vector Machine (SVM), Ordered Weight Averaging (OWA), and Random Forest (RF);
- Hybrid approaches, such as the Adaptive Neuro-fuzzy Inference System (ANFIS).
5. Earthquake Follow-on Disasters
6. Limitations and Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baize, S.; Nurminen, F.; Sarmiento, A.; Dawson, T.; Takao, M.; Scotti, O.; Azuma, T.; Boncio, P.; Champenois, J.; Cinti, F.R. A worldwide and unified database of surface ruptures (SURE) for fault displacement hazard analyses. Seismol. Res. Lett. 2020, 91, 499–520. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Feigl, K.; Rossi, M.; Adragna, F. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature 1994, 369, 227–230. [Google Scholar] [CrossRef]
- Parisi, F.; Augenti, N. Earthquake damages to cultural heritage constructions and simplified assessment of artworks. Eng. Fail. Anal. 2013, 34, 735–760. [Google Scholar] [CrossRef]
- Kader, M.A.; Jahan, I. A review of the application of remote sensing technologies in earthquake disaster management: Potentialities and challenges. In Proceedings of the International Conference on Disaster Risk Management, Dhaka, Bangladesh, 12–14 January 2019; 2019; pp. 12–14. [Google Scholar]
- Tronin, A.A. Satellite remote sensing in seismology. A review. Remote Sens. 2010, 2, 124–150. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Yen, J.-Y.; Chuang, R.Y. Coherence difference analysis of sentinel-1 SAR interferogram to identify earthquake-induced disasters in urban areas. Remote Sens. 2018, 10, 1318. [Google Scholar] [CrossRef] [Green Version]
- Saraf, A.K.; Choudhury, S. Thermal remote sensing technique in the study of pre-earthquake thermal anomalies. J. Ind. Geophys. Union 2005, 9, 197–207. [Google Scholar]
- Ahmedov, B.J.; Mirzaev, B.S.; Mamatov, F.M.; Khodzhaev, D.A.; Julliev, M.K. Integrating of gis and gps for ionospheric perturbations in d-And f-layers using vlf receiver. InterCarto InterGIS 2020, 26, 547–560. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O. Achievements of NASDA’s earthquake remote sensing frontier project. Terr. Atmos. Ocean. Sci. 2004, 15, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, X.; Hong, S.; Jing, F.; Zhao, S. Progress and development on multi-parameters remote sensing application in earthquake monitoring in China. Earthq. Sci. 2013, 26, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Rashed, T.; Weeks, J. Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int. J. Geogr. Inf. Sci. 2003, 17, 547–576. [Google Scholar] [CrossRef]
- Duzgun, H.; Yucemen, M.; Kalaycioglu, H.; Celik, K.; Kemec, S.; Ertugay, K.; Deniz, A. An integrated earthquake vulnerability assessment framework for urban areas. Nat. Hazards 2011, 59, 917–947. [Google Scholar] [CrossRef]
- Hosseini, K.A.; Hosseini, M.; Izadkhah, Y.O.; Mansouri, B.; Shaw, T. Main challenges on community-based approaches in earthquake risk reduction: Case study of Tehran, Iran. Int. J. Disaster Risk Reduct. 2014, 8, 114–124. [Google Scholar] [CrossRef]
- Singh, D.; Pandey, D.; Mina, U. Earthquake—A natural disaster, prediction, mitigation, laws and government policies, impact on biogeochemistry of earth crust, role of remote sensing and GIS in management in india—An overview. J. Geosci 2019, 7, 88–96. [Google Scholar]
- Mück, M.; Taubenböck, H.; Post, J.; Wegscheider, S.; Strunz, G.; Sumaryono, S.; Ismail, F. Assessing building vulnerability to earthquake and tsunami hazard using remotely sensed data. Nat. Hazards 2013, 68, 97–114. [Google Scholar] [CrossRef]
- McKibbin, D.J.; Blake, D.M.; Wilson, T.M.; Wotherspoon, L.; Hughes, M.W. A geospatial assessment of critical infrastructure impacts and adaptations in small rural towns following the 14 November 2016 (Kaikōura) earthquake, New Zealand. Jpn. Geotech. Soc. Spec. Publ. 2019, 6, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Lu, X.; Thorson, A.; Garfield, R.; Von Schreeb, J. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Med. 2011, 8, e1001083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deelstra, A.; Bristow, D. Characterizing Uncertainty in City-Wide Disaster Recovery through Geospatial Multi-Lifeline Restoration Modeling of Earthquake Impact in the District of North Vancouver. Int. J. Disaster Risk Sci. 2020, 11, 807–820. [Google Scholar] [CrossRef]
- Pirasteh, S.; Shamsipour, G.; Liu, G.; Hajibagheri, R.; Ghasemzadeh, A.; Jokar, M.; Zarbakhsh, H.; Behnamfar, F.; Li, J. Cloud-based geospatial platform in support of sustainable development goals 2030: How to be prepared for earthquake disasters? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 1705–1708. [Google Scholar] [CrossRef]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Booth, E.; Saito, K.; Spence, R.; Madabhushi, G.; Eguchi, R.T. Validating assessments of seismic damage made from remote sensing. Earthq. Spectra 2011, 27 (Suppl. S1), 157–177. [Google Scholar] [CrossRef]
- Yamazaki, F. Applications of remote sensing and GIS for damage assessment. Struct. Saf. Reliab. 2001, 1, 12. [Google Scholar]
- Rathje, E.M.; Adams, B.J. The role of remote sensing in earthquake science and engineering: Opportunities and challenges. Earthq. Spectra 2008, 24, 471–492. [Google Scholar] [CrossRef]
- Armaş, I. Earthquake risk perception in Bucharest, Romania. Risk Anal. 2006, 26, 1223–1234. [Google Scholar] [CrossRef]
- Kron, W. Flood risk= hazard. Values. Vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Govorčin, M.; Herak, M.; Matoš, B.; Pribičević, B.; Vlahović, I. Constraints on Complex Faulting during the 1996 Ston–Slano (Croatia) earthquake inferred from the DInSAR, seismological, and geological observations. Remote Sens. 2020, 12, 1157. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Martynski, K.; Blecki, J.; Wronowski, R.; Kulak, A.; Mlynarczyk, J.; Iwanski, R. In Mesoscale convective systems as a source of electromagnetic signals registered by ground-based system and DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite. Ann. Geophys. 2021, 39, 321–326. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Piersanti, M.; Shen, X.; De Santis, A.; Yan, R.; Yang, Y.; Zhao, S.; Zhang, Z.; Wang, Q. The seismic electromagnetic emissions during the 2010 Mw 7.8 Northern Sumatra Earthquake revealed by DEMETER satellite. Front. Earth Sci. 2020, 8, 572393. [Google Scholar] [CrossRef]
- Thach, N.N.; Ngo, D.B.-T.; Xuan-Canh, P.; Hong-Thi, N.; Thi, B.H.; Nhat-Duc, H.; Dieu, T.B. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecol. Inform. 2018, 46, 74–85. [Google Scholar] [CrossRef]
- Pollino, M.; Fattoruso, G.; Rocca, A.B.D.; Porta, L.L.; Curzio, S.L.; Arolchi, A.; James, V.; Pascale, C. An open source GIS system for earthquake early warning and post-event emergency management. In Proceedings of the International Conference on Computational Science and Its Applications, Santander, Spain, 20–23 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 376–391. [Google Scholar]
- Frigerio, I.; Ventura, S.; Strigaro, D.; Mattavelli, M.; De Amicis, M.; Mugnano, S.; Boffi, M. A GIS-based approach to identify the spatial variability of social vulnerability to seismic hazard in Italy. Appl. Geogr. 2016, 74, 12–22. [Google Scholar] [CrossRef]
- Nyimbili, P.H.; Erden, T.; Karaman, H. Integration of GIS, AHP and TOPSIS for earthquake hazard analysis. Nat. Hazards 2018, 92, 1523–1546. [Google Scholar] [CrossRef]
- Rahman, N.; Ansary, M.A.; Islam, I. GIS based mapping of vulnerability to earthquake and fire hazard in Dhaka city, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 13, 291–300. [Google Scholar] [CrossRef]
- Sahar, L.; Muthukumar, S.; French, S.P. Using aerial imagery and GIS in automated building footprint extraction and shape recognition for earthquake risk assessment of urban inventories. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3511–3520. [Google Scholar] [CrossRef]
- Hashemi, M.; Alesheikh, A.A. A GIS-based earthquake damage assessment and settlement methodology. Soil Dyn. Earthq. Eng. 2011, 31, 1607–1617. [Google Scholar] [CrossRef]
- Emrich, C.T.; Cutter, S.L.; Weschler, P.J. GIS and emergency management. The SAGE Handbook of GIS and Society; Sage: Thousand Oaks, CA, USA, 2011; pp. 321–343. [Google Scholar]
- Abdalla, R.; Esmail, M. WebGIS techniques and applications. In WebGIS for Disaster Management and Emergency Response; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–55. [Google Scholar]
- Li, B.; Wu, J.; Pan, M.; Huang, J. Application of 3D WebGIS and real-time technique in earthquake information publishing and visualization. Earthq. Sci. 2015, 28, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Nawa, Y.; Urakawa, G.; Ikemi, H.; Hamamoto, R.; Hayashi, H. Geography Network for Sharing Geospatial Information in Disaster Management. J. Disaster Res. 2010, 5, 108–116. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhao, X. Damage assessment of tunnels caused by the 2004 Mid Niigata Prefecture Earthquake using Hayashi’s quantification theory type II. Nat. Hazards 2010, 53, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Sawada, M.; Yagi, H.; Hayashi, H. A study on the technique for information sharing and presentation of earthquake disasters: By the chuetsu earthquake restoration and revival support GIS project. J. Soc. Saf. Sci. 2005, 8, 97–102. [Google Scholar]
- Yalçıner, Ö. Urban Information Systems for Earthquake-Resistant Cities: A Case Study on Pendik, İstanbul. Ph.D. Thesis, Middle East Technical University, Ankara, Türkiye, 2002. [Google Scholar]
- Phuong, N.H.; Nam, N.T. Development of a Web-GIS based Decision Support System for earthquake warning service in Vietnam. Vietnam J. Earth Sci. 2018, 40, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Rovithis, E.; Makra, K.; Kirtas, E.; Manesis, C.; Bliziotis, D.; Konstantinidou, K. Field monitoring of strong ground motion in urban areas: The Kalochori Accelerometric Network (KAN), database and Web-GIS portal. Earthq. Spectra 2018, 34, 471–501. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, Q.; Sun, Z. Research and Application of Beijing Earthquake Disaster Prevention System Based on GIS. In Proceedings of the 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018; IEEE: Piscataway, NY, USA, 2018; pp. 275–279. [Google Scholar]
- Wardle, J. Tracking Trends in Earthquakes and Tropical Storms: A Web GIS Application. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2019. [Google Scholar]
- Giuliani, G.; Peduzzi, P. The PREVIEW Global Risk Data Platform: A geoportal to serve and share global data on risk to natural hazards. Nat. Hazards Earth Syst. Sci. 2011, 11, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Hasanlou, M.; Shah-Hosseini, R.; Seydi, S.T.; Karimzadeh, S.; Matsuoka, M. Earthquake damage region detection by multitemporal coherence map analysis of radar and multispectral imagery. Remote Sens. 2021, 13, 1195. [Google Scholar] [CrossRef]
- Van Puymbroeck, N.; Michel, R.; Binet, R.; Avouac, J.-P.; Taboury, J. Measuring earthquakes from optical satellite images. Appl. Opt. 2000, 39, 3486–3494. [Google Scholar] [CrossRef]
- Gold, R.D.; Clark, D.; Barnhart, W.D.; King, T.; Quigley, M.; Briggs, R.W. Surface rupture and distributed deformation revealed by optical satellite imagery: The intraplate 2016 Mw 6.0 Petermann Ranges earthquake, Australia. Geophys. Res. Lett. 2019, 46, 10394–10403. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake of 11 August 2012. Adv. Space Res. 2013, 52, 837–852. [Google Scholar] [CrossRef]
- Yao, Q.-L.; Qiang, Z.-J. The elliptic stress thermal field prior to MS 7.3 Yutian, and MS 8.0 Wenchuan earthquakes in China in 2008. Nat. Hazards 2010, 54, 307–322. [Google Scholar] [CrossRef]
- Gorny, V.; Salman, A.; Tronin, A.; Shilin, B. Terrestrial outgoing infrared radiation as an indicator of seismic activity. arXiv 2020, arXiv:2001.1176. [Google Scholar]
- Gornyi, V.I.; Sal’Man, A.G.; Tronin, A.A.; Shilin, B.V. Outgoing Infrared Radiation of the Earth as an Indicator of Seismic Activity; Akademiia Nauk SSSR Doklady: Moscow, Russia, 1988; pp. 67–69. [Google Scholar]
- Choudhury, S.; Dasgupta, S.; Saraf, A.K.; Panda, S. Remote sensing observations of pre-earthquake thermal anomalies in Iran. Int. J. Remote Sens. 2006, 27, 4381–4396. [Google Scholar] [CrossRef]
- Hafeez, A.; Ehsan, M.; Abbas, A.; Shah, M.; Shahzad, R. Machine learning-based thermal anomalies detection from MODIS LST associated with the Mw 7.7 Awaran, Pakistan earthquake. Nat. Hazards 2022, 111, 2097–2115. [Google Scholar] [CrossRef]
- Shah, M.; Qureshi, R.U.; Khan, N.G.; Ehsan, M.; Yan, J. Artificial Neural Network based thermal anomalies associated with earthquakes in Pakistan from MODIS LST. J. Atmos. Sol. Terr. Phys. 2021, 215, 105568. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, S.; Sam, L.; Joshi, P.; Bhardwaj, A.; Martín-Torres, F.J.; Kumar, R. A review on remotely sensed land surface temperature anomaly as an earthquake precursor. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 158–166. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Han, S.-C.; Allgeyer, S.; Tregoning, P.; Sauber, J.; Behzadpour, S.; Mayer-Gürr, T.; Sneeuw, N.; Okal, E. GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes. J. Geod. 2020, 94, 65. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Cui, Y.; Sun, K. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan Province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Qi, Y.; Miao, Z.; Wu, L.; Ding, Y. Seismic microwave brightness temperature anomaly detection using multitemporal passive microwave satellite images: Ideas and limits. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6792–6806. [Google Scholar] [CrossRef]
- Maeda, T.; Takano, T. Detection of microwave signals associated with rock failures in an earthquake from satellite-borne microwave radiometer data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; IEEE: Piscataway, NY, USA, 2009; p. III–61. [Google Scholar]
- Maeda, T.; Takano, T. Detection algorithm of earthquake-related rock failures from satellite-borne microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1768–1776. [Google Scholar] [CrossRef]
- Shahrisvand, M.; Akhoondzadeh, M.; Sharifi, M.A. Detection of gravity changes before powerful earthquakes in GRACE satellite observations. Ann. Geophys. 2014, 57, A0543. [Google Scholar] [CrossRef]
- Berlin, G.L.; Schaber, G.G.; Horstman, K.C. Possible fault detection in Cottonball Basin, California: An application of radar remote sensing. Remote Sens. Environ. 1980, 10, 33–42. [Google Scholar] [CrossRef]
- Parcharidis, I.; Kokkalas, S.; Fountoulis, I.; Foumelis, M. Detection and monitoring of active faults in urban environments: Time series interferometry on the cities of Patras and Pyrgos (Peloponnese, Greece). Remote Sens. 2009, 1, 676–696. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sivasankar, T.; Anand, G. Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. Int. J. Remote Sens. 2021, 42, 2574–2593. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Cetin, E.; Cakir, Z.; Meghraoui, M.; Ergintav, S.; Akoglu, A.M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosystems 2014, 15, 2883–2894. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Wright, T.J.; Elliott, J.R.; Wang, H.; Ryder, I. Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere. Tectonophysics 2013, 609, 504–523. [Google Scholar] [CrossRef]
- Elliott, J.; Jolivet, R.; González, P.J.; Avouac, J.-P.; Hollingsworth, J.; Searle, M.; Stevens, V. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nat. Geosci. 2016, 9, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.; Walters, R.; Wright, T. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, T.; Massonnet, D. D-InSAR applications for monitoring of geological hazards with special reference to Latur earthquake 1993. Curr. Sci. 2002, 83, 502–508. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; van der Meer, F.; Hecker, C.; Perissin, D.; Saepuloh, A. Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 386–396. [Google Scholar] [CrossRef]
- Hamling, I.J.; Hreinsdóttir, S.; Clark, K.; Elliott, J.; Liang, C.; Fielding, E.; Litchfield, N.; Villamor, P.; Wallace, L.; Wright, T.J. Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science 2017, 356, eaam7194. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Tashiro, A.; Yamazaki, F. Detection of collapsed buildings due to earthquakes using a digital surface model constructed from aerial images. J. Earthq. Tsunami 2014, 8, 1450003. [Google Scholar] [CrossRef]
- Chen, R.-F.; Lin, C.-W.; Chen, Y.-H.; He, T.-C.; Fei, L.-Y. Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of southern Taiwan using airborne LiDAR DEM. Remote Sens. 2015, 7, 15443–15466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Duan, K.; You, S.; Wang, F.; Tan, S. A novel remote sensing detection method for buildings damaged by earthquake based on multiscale adaptive multiple feature fusion. Geomat. Nat. Hazards Risk 2020, 11, 1912–1938. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Kageshima, M.; Onuma, T.; Homma, S.; Mukoyama, S. Fault Displacement of the 2011 M w 6.6 Fukushima-ken Hamadori Earthquake Based on a 3D Crustal Deformation Model Constructed Using Differential InSAR–Lidar. Bull. Seismol. Soc. Am. 2021, 111, 2303–2316. [Google Scholar] [CrossRef]
- Van Ballegooy, S.; Berryman, K.; Deam, B.; Jacka, M. Repeated major episodes of tectonic deformation, lateral spread and liquefaction in Christchurch during the Canterbury Earthquake Sequence of 2010–2011. In Engineering Geology for Society and Territory-Volume 5; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1043–1049. [Google Scholar]
- Baris, A.; Spacagna, R.L.; Paolella, L.; Koseki, J.; Modoni, G. Liquefaction fragility of sewer pipes derived from the case study of Urayasu (Japan). Bull. Earthq. Eng. 2021, 19, 3963–3986. [Google Scholar] [CrossRef]
- Calais, E.; Minster, J.B. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophys. Res. Lett. 1995, 22, 1045–1048. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Krankowski, A.; Hernandez-Pajares, M.; Marra, S.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Kotulak, K.; Davidenko, D.; Blaszkiewicz, L. Ionosphere Sounding for Pre-seismic anomalies identification (INSPIRE): Results of the project and Perspectives for the short-term earthquake forecast. Front. Earth Sci. 2021, 9, 131. [Google Scholar] [CrossRef]
- Miyazaki, S. The nationwide GPS array as an earth observation system. Tech. Rep. Bull. Geogr. Surv. Inst. 1998, 44, 11–22. [Google Scholar]
- Burgmann, R.; Ayhan, M.E.; Fielding, E.J.; Wright, T.J.; McClusky, S.; Aktug, B.; Demir, C.; Lenk, O.; Turkezer, A. Deformation during the 12 November 1999 Duzce, Turkey, earthquake, from GPS and InSAR data. Bull. Seismol. Soc. Am. 2002, 92, 161–171. [Google Scholar] [CrossRef]
- Anzidei, M.; Boschi, E.; Cannelli, V.; Devoti, R.; Esposito, A.; Galvani, A.; Melini, D.; Pietrantonio, G.; Riguzzi, F.; Sepe, V. Coseismic deformation of the destructive 6 April 2009 L’Aquila earthquake (central Italy) from GPS data. Geophys. Res. Lett. 2009, 36, 39145. [Google Scholar] [CrossRef]
- Sharma, Y.; Pasari, S.; Dikshit, O.; Ching, K. GPS-based monitoring of crustal deformation in Garhwal-Kumaun Himalaya. In Proceedings of the ISPRS TC V Mid-term Symposium “Geospatial Technology—Pixel to People”, Dehradun, India, 20–23 November 2018; pp. 451–454. [Google Scholar]
- Zedek, F.; Rolland, L.M.; Mikesell, T.D.; Sladen, A.; Delouis, B.; Twardzik, C.; Coïsson, P. Locating surface deformation induced by earthquakes using GPS, GLONASS and Galileo ionospheric sounding from a single station. Adv. Space Res. 2021, 68, 3403–3416. [Google Scholar] [CrossRef]
- Bock, Y.; Melgar, D.; Crowell, B.W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers. Bull. Seismol. Soc. Am. 2011, 101, 2904–2925. [Google Scholar] [CrossRef]
- Emore, G.L.; Haase, J.S.; Choi, K.; Larson, K.M.; Yamagiwa, A. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers. Bull. Seismol. Soc. Am. 2007, 97, 357–378. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P. Image and data fusion in remote sensing of urban areas: Status issues and research trends. Int. J. Image Data Fusion 2014, 5, 2–12. [Google Scholar] [CrossRef]
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens. 2006, 27, 4433–4447. [Google Scholar] [CrossRef]
- Motagh, M.; Vajedian, S.; Behling, R.; Haghshenas Haghighi, M.; Roessner, S.; Akbari, B.; Wetzel, H.-U.; Darabi, A. 12 November 2017 Mw 7.3 Sarpol-e Zahab, Iran, earthquake: Results from combining radar and optical remote sensing measurements with geophysical modeling and field mapping. In EGU General Assembly Conference Abstracts, Proceedings of the 20th EGU General Assembly, EGU2018, Vienna, Austria, 4–13 April 2018; EGU: Munich, Germany, 2018; p. 10528. [Google Scholar]
- Fan, X.; Du, X.; Tan, J.; Zhu, J. Three-dimensional visualization simulation assessment system based on multi-source data fusion for the Wenchuan earthquake. J. Appl. Remote Sens. 2009, 3, 031640. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Garthwaite, M.C. Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef] [Green Version]
- Adriano, B.; Xia, J.; Baier, G.; Yokoya, N.; Koshimura, S. Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 sulawesi earthquake and tsunami in Palu, Indonesia. Remote Sens. 2019, 11, 886. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Dech, S.; Wagner, W. Remote sensing time series revealing land surface dynamics: Status quo and the pathway ahead. In Remote Sensing Time Series; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–24. [Google Scholar]
- Tronin, A.A. Remote sensing and earthquakes: A review. Phys. Chem. Earth Parts A/B/C 2006, 31, 138–142. [Google Scholar] [CrossRef]
- Daout, S.; Steinberg, A.; Isken, M.P.; Heimann, S.; Sudhaus, H. Illuminating the spatio-temporal evolution of the 2008–2009 Qaidam earthquake sequence with the joint use of InSAR time series and teleseismic data. Remote Sens. 2020, 12, 2850. [Google Scholar] [CrossRef]
- Liu, F.; Elliott, J.; Craig, T.; Hooper, A.; Wright, T. Improving the resolving power of InSAR for earthquakes using time series: A case study in Iran. Geophys. Res. Lett. 2021, 48, e2021GL093043. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, S.; Sun, Z.; Guo, H.; Zhang, L.; Feng, K. Advances of satellite remote sensing technology in earthquake prediction. Nat. Hazards Rev. 2021, 22, 03120001. [Google Scholar] [CrossRef]
- Ihmle, P.F.; Jordan, T.H. Teleseismic search for slow precursors to large earthquakes. Science 1994, 266, 1547–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Alvan, H.V.; Mansor, S.; Omar, H.; Azad, F.H. Precursory signals associated with the 2010 M8. 8 Bio-Bio earthquake (Chile) and the 2010 M7. 2 Baja California earthquake (Mexico). Arab. J. Geosci. 2014, 7, 4889–4897. [Google Scholar] [CrossRef]
- Balasis, G.; Mandea, M. Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 2007, 431, 173–195. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Gershenzon, N.I.; Gokhberg, M.B. Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake. Phys. Earth Planet. Inter. 1989, 57, 144–156. [Google Scholar] [CrossRef]
- Martinelli, G. Contributions to a history of earthquake prediction research. Seismol. Res. Lett. 2000, 71, 583–588. [Google Scholar] [CrossRef]
- Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S. Ionospheric precursors of earthquakes; recent advances in theory and practical applications. Terr. Atmos. Ocean. Sci. 2004, 15, 413–436. [Google Scholar] [CrossRef]
- Guo, G.; Wang, B. Cloud anomaly before Iran earthquake. Int. J. Remote Sens. 2008, 29, 1921–1928. [Google Scholar] [CrossRef]
- Ingebritsen, S.E.; Manga, M. Hydrogeochemical precursors. Nat. Geosci. 2014, 7, 697–698. [Google Scholar] [CrossRef]
- Yoshizawa, K. International Association of Seismology and Physics of the Earth’s Interior. In Geosciences: The Future; IUGG: Potsdam, Germany, 2003; p. 11. [Google Scholar]
- Wang, G.; Liu, Y.; Xu, J. Short-term failure mechanism triggered by hydraulic fracturing. Energy Sci. Eng. 2020, 8, 592–601. [Google Scholar] [CrossRef]
- Sornette, D.; Mearns, E.; Wheatley, S. Revisiting the predictability of the Haicheng and Tangshan earthquakes. Symmetry 2021, 13, 1206. [Google Scholar] [CrossRef]
- Paudel, S.R.; Banjara, S.P.; Wagle, A.; Freund, F.T. Earthquake chemical precursors in groundwater: A review. J. Seismol. 2018, 22, 1293–1314. [Google Scholar] [CrossRef]
- Solanky, V.; Singh, S.; Katiyar, S. Land surface temperature estimation using remote sensing data. In Hydrologic Modeling; Springer: Berlin/Heidelberg, Germany, 2018; pp. 343–351. [Google Scholar]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M. Satellite thermal infrared anomalies associated with strong earthquakes in the Vrancea area of Romania. Open Geosci. 2015, 7, 606–617. [Google Scholar]
- Mahmood, I.; Iqbal, M.F.; Shahzad, M.I.; Waqas, A. Investigation of earthquake thermal precursors in active tectonic regions of the world. J. Geodyn. 2020, 141, 101785. [Google Scholar] [CrossRef]
- Khalili, M.; Panah, S.K.A.; Eskandar, S.S.A. Using Robust Satellite Technique (RST) to determine thermal anomalies before a strong earthquake: A case study of the Saravan earthquake (April 16th, 2013, MW = 7.8, Iran). J. Asian Earth Sci. 2019, 173, 70–78. [Google Scholar] [CrossRef]
- Barkat, A.; Ali, A.; Rehman, K.; Awais, M.; Riaz, M.S.; Iqbal, T. Thermal IR satellite data application for earthquake research in Pakistan. J. Geodyn. 2018, 116, 13–22. [Google Scholar] [CrossRef]
- Malyshkov, Y.P.; Malyshkov, S.Y. Eccentric rotation of the earth’s core and lithosphere: Origin of deformation waves and their practical application. In The Earth’s Core: Structure, Properties and Dynamics; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 113–209. [Google Scholar]
- Malyshkov, Y.P.; Malyshkov, S.Y. Periodicity of geophysical fields and seismicity: Possible links with core motion. Russ. Geol. Geophys. 2009, 50, 115–130. [Google Scholar] [CrossRef]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Huang, Q.; Han, P.; Hattori, K.; Ren, H. Electromagnetic Signals Associated with Earthquakes: A Review of Observations, Data Processing, and Mechanisms in China. In Seismoelectric Exploration: Theory, Experiments, and Applications; AGU: Washington, DC, USA, 2020; pp. 415–436. [Google Scholar]
- Leonard, R.S.; Barnes, R., Jr. Observation of ionospheric disturbances following the Alaska earthquake. J. Geophys. Res. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Larkina, V.; Nalivayko, A.; Gershenzon, N.I.; Gokhberg, M.B.; Liperovskiy, V.; Shalimov, S. Observations of VLF emission, related with seismic activity, on the Interkosmos-19 satellite. Geomagn. Aeron. 1983, 23, 684. [Google Scholar]
- Serebryakova, O.; Bilichenko, S.; Chmyrev, V.; Parrot, M.; Rauch, J.-L.; Lefeuvre, F.; Pokhotelov, O. Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites. Geophys. Res. Lett. 1992, 19, 91–94. [Google Scholar] [CrossRef]
- Larkina, V.; Migulin, V.; Molchanov, O.; Kharkov, I.; Inchin, A.; Schvetcova, V. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys. Earth Planet. Inter. 1989, 57, 100–109. [Google Scholar] [CrossRef]
- Hayakawa, M.; Molchanov, O. Summary report of NASDA’s earthquake remote sensing frontier project. Phys. Chem. Earth Parts A/B/C 2004, 29, 617–625. [Google Scholar] [CrossRef]
- Walker, S.; Kadirkamanathan, V.; Pokhotelov, O. In Changes in the ultra-low frequency wave field during the precursor phase to the Sichuan earthquake: DEMETER observations. Ann. Geophys. 2013, 31, 1597–1603. [Google Scholar] [CrossRef] [Green Version]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Wang, T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sens. 2022, 14, 1582. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.A.; Inan, S. A Multiparametric Approach to Study the Preparation Phase of the 2019 M7. 1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, D.; De Santis, A.; D’Arcangelo, S.; Poggio, F.; Piscini, A.; Campuzano, S.A.; De Carvalho, W.V. Pre-earthquake chain processes detected from ground to satellite altitude in preparation of the 2016–2017 seismic sequence in Central Italy. Remote Sens. Environ. 2019, 229, 93–99. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Hao, G.; Guo, J.; Zhang, W.; Chen, Y.; Yuen, D.A. High-precision chaotic radial basis function neural network model: Data forecasting for the Earth electromagnetic signal before a strong earthquake. Geosci. Front. 2022, 13, 101315. [Google Scholar] [CrossRef]
- Yi, Z.; Xingmin, M.; Allesandro, N.; Tom, D.; Guan, C.; Colm, J.; Yuanxi, L.; Xiaojun, S. Characterization of pre-failure deformation and evolution of a large earthflow using InSAR monitoring and optical image interpretation. Landslides 2021, 19, 35–50. [Google Scholar] [CrossRef]
- Nardò, S.; Ascione, A.; Mazzuoli, S.; Terranova, C.; Vilardo, G. PS-InSAR data analysis: Pre-seismic ground deformation in the 2009 L’Aquila earthquake region. Boll. Di Geofis. Teor. Ed. Appl. 2020. [Google Scholar]
- Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J. Geodyn. 2010, 49, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Earthquake prediction: Retrospect and prospect. Sci. China Earth Sci. 2009, 3912, 1633–1658. [Google Scholar]
- Chen, C.-H.; Yeh, T.-K.; Wen, S.; Meng, G.; Han, P.; Tang, C.-C.; Liu, J.-Y.; Wang, C.-H. Unique pre-earthquake deformation patterns in the spatial domains from GPS in Taiwan. Remote Sens. 2020, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.; Wang, J.; Huang, Y.; Zhou, K.; Ding, X.; Fu, J. The review of GRACE data applications in terrestrial hydrology monitoring. Adv. Meteorol. 2014, 2014, 725131. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-C.; Shum, C.-K.; Bevis, M.; Ji, C.; Kuo, C.-Y. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 2006, 313, 658–662. [Google Scholar] [CrossRef] [Green Version]
- Heki, K.; Matsuo, K. Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry. Geophys. Res. Lett. 2010, 37, 45335. [Google Scholar] [CrossRef] [Green Version]
- ZHANG, K.-L.; MA, J.; WEI, D.-P. Detection of gravity anomalies before the 2011 Mw9. 0 Tohoku-Oki earthquake using Superconducting gravimeters. Chin. J. Geophys. 2013, 56, 2292–2302. [Google Scholar]
- Zhang, G.; Fu, G.; Zhou, X. The evolution process of gravitational field after the Sumatra Mw9. 3 earthquake from GRACE RL05 data. J. Geodes. Geodyn 2015, 35, 303–308. [Google Scholar]
- Zhao, R.; Liu, X.; Xu, W. Integration of coseismic deformation into WebGIS for near real-time disaster evaluation and emergency response. Environ. Earth Sci. 2020, 79, 414. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, W.; Zhang, J.; Li, B.; Yan, R.; Wang, X. Sentinel-1 SAR-Based coseismic deformation monitoring service for rapid geodetic imaging of global earthquakes. Nat. Hazards Res. 2021, 1, 11–19. [Google Scholar] [CrossRef]
- Wu, X.; Xu, C.; Xu, X.; Chen, G.; Zhu, A.; Zhang, L.; Yu, G.; Du, K. A Web-GIS hazards information system of the 2008 Wenchuan Earthquake in China. Nat. Hazards Res. 2022, 2, 210–217. [Google Scholar] [CrossRef]
- Aye, Z.C.; Jaboyedoff, M.; Derron, M.-H.; Van Westen, C.J. Prototype of a web-based participative decision support platform in natural hazards and risk management. ISPRS Int. J. Geo-Inf. 2015, 4, 1201–1224. [Google Scholar] [CrossRef] [Green Version]
- Damalas, A.; Mettas, C.; Evagorou, E.; Giannecchini, S.; Iasio, C.; Papadopoulos, M.; Konstantinou, A.; Hadjimitsis, D. Development and Implementation of a DECATASTROPHIZE platform and tool for the management of disasters or multiple hazards. Int. J. Disaster Risk Reduct. 2018, 31, 589–601. [Google Scholar] [CrossRef]
- Haworth, B.; Bruce, E. A review of volunteered geographic information for disaster management. Geogr. Compass 2015, 9, 237–250. [Google Scholar] [CrossRef]
- Giovinazzi, S.; Pollino, M.; Rosato, V.; Clemente, P.; Buffarini, G. A decision support system for the emergency management of highways in the event of earthquakes. In A Decision Support System for the Emergency Management of Highways in the Event of Earthquakes; Pisa University Press: Pisa, Italy, 2019; pp. 101–110. [Google Scholar]
- Barnhart, W.D.; Hayes, G.P.; Wald, D.J. Global earthquake response with imaging geodesy: Recent examples from the USGS NEIC. Remote Sens. 2019, 11, 1357. [Google Scholar] [CrossRef] [Green Version]
- Dell’Acqua, F.; Gamba, P. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar] [CrossRef]
- Yamazaki, F.; Kouchi, K.i.; Kohiyama, M.; Muraoka, N.; Matsuoka, M. Earthquake damage detection using high-resolution satellite images. In IGARSS 2004, Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 2280–2283. [Google Scholar]
- Dong, Y.; Li, Q.; Dou, A.; Wang, X. Extracting damages caused by the 2008 Ms 8.0 Wenchuan earthquake from SAR remote sensing data. J. Asian Earth Sci. 2011, 40, 907–914. [Google Scholar] [CrossRef]
- Guo, H.; Liu, L.; Lei, L.; Wu, Y.; Li, L.; Zhang, B.; Zuo, Z.; Li, Z. Dynamic analysis of the Wenchuan Earthquake disaster and reconstruction with 3-year remote sensing data. Int. J. Digit. Earth 2010, 3, 355–364. [Google Scholar] [CrossRef]
- Barazzetti, L.; Cuca, B. Identification of Buildings Damaged by Natural Hazards Using Very High-Resolution Satellite Images: The Case of Earthquake in L’Aquila, Italy. In Remote Sensing for Archaeology and Cultural Landscapes; Springer: Berlin/Heidelberg, Germany, 2020; pp. 139–151. [Google Scholar]
- Anniballe, R.; Noto, F.; Scalia, T.; Bignami, C.; Stramondo, S.; Chini, M.; Pierdicca, N. Earthquake damage mapping: An overall assessment of ground surveys and VHR image change detection after L’Aquila 2009 earthquake. Remote Sens. Environ. 2018, 210, 166–178. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A review on early forest fire detection systems using optical remote sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Ji, M.; Liu, L.; Du, R.; Buchroithner, M.F. A comparative study of texture and convolutional neural network features for detecting collapsed buildings after earthquakes using pre-and post-event satellite imagery. Remote Sens. 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Mas, E.; Koshimura, S. Towards operational satellite-based damage-mapping using u-net convolutional network: A case study of 2011 tohoku earthquake-tsunami. Remote Sens. 2018, 10, 1626. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, X.; Dou, A.; Wu, X. The extraction of post-earthquake building damage informatiom based on convolutional neural network. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, Beijing, China, 7–10 May 2018; Volume 42. [Google Scholar]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Nex, F.; Vosselman, G. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J. Photogramm. Remote Sens. 2018, 140, 45–59. [Google Scholar] [CrossRef]
- Janalipour, M.; Mohammadzadeh, A. A novel and automatic framework for producing building damage map using post-event LiDAR data. Int. J. Disaster Risk Reduct. 2019, 39, 101238. [Google Scholar] [CrossRef]
- Aixia, D.; Zongjin, M.; Shusong, H.; Xiaoqing, W. Building damage extraction from post-earthquake airborne LiDAR data. Acta Geol. Sin. -Engl. Ed. 2016, 90, 1481–1489. [Google Scholar] [CrossRef]
- Eslamizade, F.; Rastiveis, H.; Zahraee, N.K.; Jouybari, A.; Shams, A. Decision-level fusion of satellite imagery and LiDAR data for post-earthquake damage map generation in Haiti. Arab. J. Geosci. 2021, 14, 1120. [Google Scholar] [CrossRef]
- Khodaverdi, N.; Rastiveis, H.; Jouybari, A. Combination of post-earthquake LiDAR data and satellite imagery for buildings damage detection. Earth Obs. Geomat. Eng. 2019, 3, 12–20. [Google Scholar]
- Wang, X.; Li, P. Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2020, 159, 322–336. [Google Scholar] [CrossRef]
- Saganeiti, L.; Amato, F.; Nolè, G.; Vona, M.; Murgante, B. Early estimation of ground displacements and building damage after seismic events using SAR and LiDAR data: The case of the Amatrice earthquake in central Italy, on 24th August 2016. Int. J. Disaster Risk Reduct. 2020, 51, 101924. [Google Scholar] [CrossRef]
- Turker, M.; Sumer, E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images. Int. J. Remote Sens. 2008, 29, 3073–3089. [Google Scholar] [CrossRef]
- Syifa, M.; Kadavi, P.R.; Lee, C.-W. An artificial intelligence application for post-earthquake damage mapping in Palu, central Sulawesi, Indonesia. Sensors 2019, 19, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Liu, Y.; Ren, Y.; Yu, J. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sens. 2020, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Sun, G.; Zhang, X.; Hao, Y.; Zhang, A.; Ren, J.; Ma, H. Combined multiscale segmentation convolutional neural network for rapid damage mapping from postearthquake very high-resolution images. J. Appl. Remote Sens. 2019, 13, 022007. [Google Scholar] [CrossRef]
- Khodaverdizahraee, N.; Rastiveis, H.; Jouybari, A. Segment-by-segment comparison technique for earthquake-induced building damage map generation using satellite imagery. Int. J. Disaster Risk Reduct. 2020, 46, 101505. [Google Scholar] [CrossRef]
- Seydi, S.; Rastiveis, H. A deep learning framework for roads network damage assessment using post-earthquake lidar data. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Karaj, Iran, 12–14 October 2019. [Google Scholar]
- Song, D.; Tan, X.; Wang, B.; Zhang, L.; Shan, X.; Cui, J. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-damaged buildings using single-phase remote sensing imagery. Int. J. Remote Sens. 2020, 41, 1040–1066. [Google Scholar] [CrossRef]
- Wang, C.; Antos, S.E.; Triveno, L.M. Automatic detection of unreinforced masonry buildings from street view images using deep learning-based image segmentation. Autom. Constr. 2021, 132, 103968. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, L.; Zhang, C.; Chen, W.; Xu, Y.; Zhang, Q. A Two-Stage Seismic Damage Assessment Method for Small, Dense, and Imbalanced Buildings in Remote Sensing Images. Remote Sens. 2022, 14, 1012. [Google Scholar] [CrossRef]
- Batur, M.; Yilmaz, O.; Ozener, H. A Case Study of Deformation Measurements of Istanbul Land Walls via Terrestrial Laser Scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6362–6371. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Q.; Jiao, Q.; Wang, X.; Wu, L. Extraction of wall cracks on earthquake-damaged buildings based on TLS point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3088–3096. [Google Scholar] [CrossRef]
- Cavalagli, N.; Kita, A.; Falco, S.; Trillo, F.; Costantini, M.; Ubertini, F. Satellite radar interferometry and in-situ measurements for static monitoring of historical monuments: The case of Gubbio, Italy. Remote Sens. Environ. 2019, 235, 111453. [Google Scholar] [CrossRef]
- Kim, T.; Song, J.; Kwon, O.S. Pre-and post-earthquake regional loss assessment using deep learning. Earthq. Eng. Struct. Dyn. 2020, 49, 657–678. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Beydoun, G.; Sofyan, H.; Affan, M. Integrated model for earthquake risk assessment using neural network and analytic hierarchy process: Aceh province, Indonesia. Geosci. Front. 2020, 11, 613–634. [Google Scholar] [CrossRef]
- Preciado, A.; Ramirez-Gaytan, A.; Salido-Ruiz, R.A.; Caro-Becerra, J.L.; Lujan-Godinez, R. Earthquake risk assessment methods of unreinforced masonry structures: Hazard and vulnerability. Earthq. Struct 2015, 9, 719–733. [Google Scholar] [CrossRef]
- Bolin, R.; Stanford, L. The Northridge Earthquake: Vulnerability and Disaster; Routledge: London, UK, 2006. [Google Scholar]
- Chaulagain, H.; Rodrigues, H.; Silva, V.; Spacone, E.; Varum, H. Seismic risk assessment and hazard mapping in Nepal. Nat. Hazards 2015, 78, 583–602. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Renaud, F.G.; Haas, S.; Sebesvari, Z. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci. Total Environ. 2018, 631, 71–80. [Google Scholar] [CrossRef] [Green Version]
- McEntire, D. Understanding and reducing vulnerability: From the approach of liabilities and capabilities. Disaster Prev. Manag. Int. J. 2012, 20, 294–313. [Google Scholar] [CrossRef]
- Sari, A.M.; Fakhrurrozi, A. Earthquake Hazard Analysis Methods: A Review. In IOP Conference Series: Earth and Environmental Science, 2018; IOP Publishing: Bristol, UK, 2018; p. 012044. [Google Scholar]
- Shan, X.-J.; Zhang, G.-H.; Wang, C.-S.; Li, Y.-C.; Qu, C.-Y.; Song, X.-G.; Yu, L.; Liu, Y.-H. Joint inversion for the spatial fault slip distribution of the 2015 Nepal MW7. 9 earthquake based on InSAR and GPS observations. Chin. J. Geophys. 2015, 58, 4266–4276. [Google Scholar]
- Sreejith, K.; Sunil, P.; Agrawal, R.; Saji, A.P.; Ramesh, D.; Rajawat, A. Coseismic and early postseismic deformation due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, earthquake from InSAR and GPS measurements. Geophys. Res. Lett. 2016, 43, 3160–3168. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, F.; Yano, Y.; Matsuoka, M. Visual damage interpretation of buildings in Bam city using QuickBird images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21 (Suppl. S1), 329–336. [Google Scholar] [CrossRef]
- Chiroiu, L. Damage assessment of the 2003 Bam, Iran, earthquake using Ikonos imagery. Earthq. Spectra 2005, 21 (Suppl. S1), 219–224. [Google Scholar] [CrossRef]
- Turker, M.; San, B. SPOT HRV data analysis for detecting earthquake-induced changes in Izmit, Turkey. Int. J. Remote Sens. 2003, 24, 2439–2450. [Google Scholar] [CrossRef]
- Park, S.-E.; Jung, Y.T. Detection of earthquake-induced building damages using polarimetric SAR data. Remote Sens. 2020, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Feng, W.; Chen, K.; Samsonov, S. Source characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, earthquake derived from the advanced land observation satellite 2 data. Remote Sens. 2019, 11, 1999. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Xu, C.; Wen, Y.; Wang, S.; Xu, G.; Zhao, Y.; Yi, L. The 2018 Mw 7.5 Palu earthquake: A supershear rupture event constrained by InSAR and broadband regional seismograms. Remote Sens. 2019, 11, 1330. [Google Scholar] [CrossRef] [Green Version]
- Chini, M.; Atzori, S.; Trasatti, E.; Bignami, C.; Kyriakopoulos, C.; Tolomei, C.; Stramondo, S. The May 12, 2008, (Mw 7.9) Sichuan earthquake (China): Multiframe ALOS-PALSAR DInSAR analysis of coseismic deformation. IEEE Geosci. Remote Sens. Lett. 2009, 7, 266–270. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Wen, Y.; Yin, Z.; Jiang, G.; Fang, L. Slip model for the 25 November 2016 Mw 6.6 Aketao earthquake, western China, revealed by Sentinel-1 and ALOS-2 observations. Remote Sens. 2017, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Lajoie, L.J.; Nissen, E.; Johnson, K.L.; Arrowsmith, J.R.; Glennie, C.L.; Hinojosa-Corona, A.; Oskin, M.E. Extent of low-angle normal slip in the 2010 El Mayor-Cucapah (Mexico) earthquake from differential lidar. J. Geophys. Res. Solid Earth 2019, 124, 943–956. [Google Scholar] [CrossRef] [Green Version]
- Sengar, S.S.; Kumar, A.; Ghosh, S.K.; Wason, H.R.; Roy, P.S. Liquefaction identification using class-based sensor independent approach based on single pixel classification after 2001 Bhuj, India earthquake. J. Appl. Remote Sens. 2012, 6, 063531. [Google Scholar]
- Franke, K.W.; Rollins, K.M.; Ledezma, C.; Hedengren, J.D.; Wolfe, D.; Ruggles, S.; Bender, C.; Reimschiissel, B. Reconnaissance of two liquefaction sites using small unmanned aerial vehicles and structure from motion computer vision following the April 1, 2014 Chile earthquake. J. Geotech. Geoenvironmental Eng. 2017, 143, 04016125. [Google Scholar] [CrossRef]
- Civico, R.; Brunori, C.A.; De Martini, P.M.; Pucci, S.; Cinti, F.R.; Pantosti, D. Liquefaction susceptibility assessment in fluvial plains using airborne lidar: The case of the 2012 Emilia earthquake sequence area (Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Elias, P.; Briole, P.; Valkaniotis, S.; Escartin, J.; Tsironi, V.; Karasante, I.; Kosma, C. Co-seismic and post-seismic deformation, field observations and fault model of the 30 October 2020 Mw= 7.0 Samos earthquake, Aegean Sea. Acta Geophys. 2021, 69, 999–1024. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Lodhi, M.A. Earthquake-induced landslide mapping in the western Himalayas using medium resolution ASTER imagery. Int. J. Remote Sens. 2011, 32, 5331–5346. [Google Scholar] [CrossRef]
- Chini, M.; Cinti, F.; Stramondo, S. Co-seismic surface effects from very high resolution panchromatic images: The case of the 2005 Kashmir (Pakistan) earthquake. Nat. Hazards Earth Syst. Sci. 2011, 11, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Harp, E. Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7. 9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides 2009, 6, 153–159. [Google Scholar] [CrossRef]
- Aimaiti, Y.; Liu, W.; Yamazaki, F.; Maruyama, Y. Earthquake-induced landslide mapping for the 2018 Hokkaido Eastern Iburi earthquake using PALSAR-2 data. Remote Sens. 2019, 11, 2351. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, A.; Nan, X.; Zhang, Z.; Lei, G. Postearthquake landslides mapping from Landsat-8 data for the 2015 Nepal earthquake using a pixel-based change detection method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1758–1768. [Google Scholar] [CrossRef]
- Liu, W.; Yamazaki, F.; Gokon, H.; Koshimura, S.-i. Extraction of tsunami-flooded areas and damaged buildings in the 2011 Tohoku-oki earthquake from TerraSAR-X intensity images. Earthq. Spectra 2013, 29 (Suppl. S1), 183–200. [Google Scholar] [CrossRef] [Green Version]
- Endo, Y.; Adriano, B.; Mas, E.; Koshimura, S. New insights into multiclass damage classification of tsunami-induced building damage from SAR images. Remote Sens. 2018, 10, 2059. [Google Scholar] [CrossRef] [Green Version]
- Mas, E.; Koshimura, S.; Suppasri, A.; Matsuoka, M.; Matsuyama, M.; Yoshii, T.; Jimenez, C.; Yamazaki, F.; Imamura, F. Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato. Nat. Hazards Earth Syst. Sci. 2012, 12, 2689–2697. [Google Scholar] [CrossRef] [Green Version]
- Suppasri, A.; Koshimura, S.; Imamura, F. Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Nat. Hazards Earth Syst. Sci. 2011, 11, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Theilen-Willige, B.; Wenzel, H. Remote sensing and GIS contribution to a natural hazard database in western Saudi Arabia. Geosciences 2019, 9, 380. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Singh, K.K. Satellite image classification using Genetic Algorithm trained radial basis function neural network, application to the detection of flooded areas. J. Vis. Commun. Image Represent. 2017, 42, 173–182. [Google Scholar] [CrossRef]
- Sato, M.; Chen, S.-W.; Satake, M. Polarimetric SAR analysis of tsunami damage following the March 11, 2011 East Japan earthquake. Proc. IEEE 2012, 100, 2861–2875. [Google Scholar] [CrossRef]
- Joyce, K.E.; Samsonov, S.; Jongens, R.; Lee, J.M.; Glassey, P.J. Using remote sensing for mapping the effects of natural hazards in New Zealand. In Proceedings of the IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; IEEE: Piscataway, NY, USA, 2008; pp. II-1251–II-1254. [Google Scholar]
- PV, S.K.; Kim, D.-j.; Jung, J. Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal revealed from small baseline subset-DInSAR analysis. GIScience Remote Sens. 2018, 55, 604–621. [Google Scholar]
- Fuentes, D.D.; Baquedano Julià, P.A.; D’Amato, M.; Laterza, M. Preliminary seismic damage assessment of Mexican churches after September 2017 earthquakes. Int. J. Archit. Herit. 2021, 15, 505–525. [Google Scholar] [CrossRef]
- Lira, J.; Nuñez, M. Subsidence and Morphologic Variations in Mexico City Generated by the Earthquakes of September 2017. Geofísica Int. 2019, 58, 211–227. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K. Landslide mapping using optical and radar data: A case study from Aminteo, Western Macedonia Greece. Eur. J. Remote Sens. 2020, 53 (Suppl. S2), 17–27. [Google Scholar] [CrossRef] [Green Version]
- Xichao, H.; Meng, W.; Bing, H.; Tianbin, Y.; Yu, J. Study on Early Identification of Landslide Hazard in Mountain Valley Area based on InSAR and Optical Remote Sensing Technology. In Proceedings of the IOP Conference Series: Earth and Environmental Science, London, UK, 22–24 April 2020; IOP Publishing: Bristol, UK, 2020; p. 062047. [Google Scholar]
- Nguyen Hao, Q.; Takewaka, S. Shoreline Changes along Northern Ibaraki Coast after the Great East Japan Earthquake of 2011. Remote Sens. 2021, 13, 1399. [Google Scholar] [CrossRef]
- Valerio, E.; Tizzani, P.; Carminati, E.; Doglioni, C.; Pepe, S.; Petricca, P.; De Luca, C.; Bignami, C.; Solaro, G.; Castaldo, R. Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia earthquake (central Italy) investigated through seismological data, DInSAR measurements, and numerical modelling. Remote Sens. 2018, 10, 1901. [Google Scholar] [CrossRef] [Green Version]
- Wibowo, S.B.; Hadmoko, D.S.; Isnaeni, Y.; Farda, N.M.; Putri, A.F.S.; Nurani, I.W.; Supangkat, S.H. Spatio-Temporal Distribution of Ground Deformation Due to 2018 Lombok Earthquake Series. Remote Sens. 2021, 13, 2222. [Google Scholar] [CrossRef]
- Jelenek, J.; Kopačková-Strnadová, V. Synergic use of Sentinel-1 and Sentinel-2 data for automatic detection of earthquake-triggered landscape changes: A case study of the 2016 Kaikoura earthquake (Mw 7.8), New Zealand. Remote Sens. Environ. 2021, 265, 112634. [Google Scholar] [CrossRef]
- Liu, R.; Li, L.; Pirasteh, S.; Lai, Z.; Yang, X.; Shahabi, H. The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery. Arab. J. Geosci. 2021, 14, 259. [Google Scholar] [CrossRef]
- Umar, Z.; Pradhan, B.; Ahmad, A.; Jebur, M.N.; Tehrany, M.S. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena 2014, 118, 124–135. [Google Scholar] [CrossRef]
- Saikia, B.J.; Parthasarathy, G.; Gorbatsevich, F.F.; Borah, R.R. Characterization of amphiboles from the Kola super-deep borehole, Russia by Raman and infrared spectroscopy. Geosci. Front. 2021, 12, 101134. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, H.; Kang, K. Wenchuan earthquake and satellite gravity variation. Geod. Geodyn 2011, 33, 5–7. [Google Scholar]
- Su, L.-n.; Gan, W.-j.; Xiao, G.-r. Brief overview on high-rate GPS epoch-by-epoch precise positioning and GPS seismology. Prog. Geophys. 2018, 33, 503–510. [Google Scholar]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Wu, L.-x.; Qin, K.; Liu, S.-j. GEOSS-based thermal parameters analysis for earthquake anomaly recognition. Proc. IEEE 2012, 100, 2891–2907. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Bechor, N.B.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33, 26883. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.A.; Villasenor, J. Decorrelation in Interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 2. [Google Scholar]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Slow Moving Hazard Hotspot from InSAR Data: Improving Communication with Decision Makers. In EGU General Assembly Conference Abstracts 2010, Proceedings of the EGU General Assembly 2010, Vienna, Austria, 2–7 May 2010; EGU: Munich, Germany, 2010; p. 15047.Makers. [Google Scholar]
Natural Disasters | Brief Description and Consequences | RS Data Acquisition System and Corresponding Reference | |
---|---|---|---|
Ground shaking | Ground shaking is a disruptive upwards, downwards, and sideways vibration of the surface during an earthquake. Effects: structural damage or collapse; may consequently cause other hazards such as liquefaction or landslides. | InSAR | [196] |
GPS | [197] | ||
QuickBird | [198] | ||
IKONOS | [199] | ||
SPOT HRV | [200] | ||
PALSAR-2 | [201] | ||
Ground rupture | Ground rupture can be defined as permanent deformation which occurs when sudden movement along a fault breaks the earth’s surface. Effects: fracturing, cracking, and ground displacement due to movement of the fault. | ALOS-2 SAR | [202] |
ALOS-2 InSAR | [203] | ||
DInSAR | [204] | ||
Sentinel-1 | [205] | ||
LiDAR | [206] | ||
Liquefaction | Liquefaction is a phenomenon in which sediments at or near the ground surface lose their strength in response to ground shaking and behave like liquid. Effects: liquefaction usually occurs under buildings and other structures and can cause severe damage during earthquakes. | Landsat-7 | [207] |
sUAV-based optical sensor | [208] | ||
Airbone LiDAR | [209] | ||
GNSS | [210] | ||
Landslides | Earthquake-induced landslide is a down slope movement of rocks, soil, or other debris, usually caused by a strong shaking. Effects: soil erosion, blocking of roads and railways, destruction of buildings and other structures. | SPOT-5 | [211] |
ASTER | [212] | ||
QuickBird | [213] | ||
IKONOS | [214] | ||
PALSAR-2 | [215] | ||
Landsat | [216] | ||
Tsunamis | Earthquake-induced tsunami manifests itself in the form of a series of high waves. Effects: causes severe flooding coastal erosion, drowning, and property damage. | TerraSAR-X | [217] |
SAR | [218] | ||
Worldview-2 | [167] | ||
QuickBird | [219] | ||
IKONOS | [220] | ||
Flooding | An earthquake can severely damage or break dams. The water from the river or the reservoir would then flood the area, damaging buildings, and in the worst case, may wash away or drown people. | Sentinel-2 | [221] |
Landsat-2 | [222] | ||
SAR | [223] | ||
QuickBird | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafapourtehrany, M.; Batur, M.; Shabani, F.; Pradhan, B.; Kalantar, B.; Özener, H. A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment. Remote Sens. 2023, 15, 1939. https://doi.org/10.3390/rs15071939
Shafapourtehrany M, Batur M, Shabani F, Pradhan B, Kalantar B, Özener H. A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment. Remote Sensing. 2023; 15(7):1939. https://doi.org/10.3390/rs15071939
Chicago/Turabian StyleShafapourtehrany, Mahyat, Maryna Batur, Farzin Shabani, Biswajeet Pradhan, Bahareh Kalantar, and Haluk Özener. 2023. "A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment" Remote Sensing 15, no. 7: 1939. https://doi.org/10.3390/rs15071939
APA StyleShafapourtehrany, M., Batur, M., Shabani, F., Pradhan, B., Kalantar, B., & Özener, H. (2023). A Comprehensive Review of Geospatial Technology Applications in Earthquake Preparedness, Emergency Management, and Damage Assessment. Remote Sensing, 15(7), 1939. https://doi.org/10.3390/rs15071939