The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Development Datasets
2.2. Target Data: TAHMO Rain Gauge Data
2.3. Benchmark Products
2.4. Study Area: North of Ghana
2.5. Data Preprocessing
2.6. Deep Learning Model
2.6.1. RainRunner Architecture
2.6.2. RainRunner-R Architecture
2.7. Training and Hyperparameter Search
2.8. Performance Metrics and Misclassification Analysis
3. Results
3.1. Selection of Best-Performing Model Architecture
3.2. Model Performance Evaluation
3.3. Misclassification Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mortimore, M. Adapting to Drought. Farmers, Famine and Desertification in West Africa; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Agnew, C. Spatial aspects of drought in the Sahel. Arid. Environ. 1990, 18, 279–293. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Song, F.; Leung, L.R.; Lu, J.; Dong, L.; Zhou, W.; Harrop, B.; Qian, Y. Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Clim. Chang. 2021, 11, 605–612. [Google Scholar] [CrossRef]
- Shukla, S.; Husak, G.; Turner, W.; Davenport, F.; Funk, C.; Harrison, L.; Krell, N. A slow rainy season onset is a reliable harbinger of drought in most food insecure regions in Sub-Saharan Africa. PLoS ONE 2021, 16, e0242883. [Google Scholar] [CrossRef] [PubMed]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Clapp, F. Estimating Monthly Precipitation from Satellite Data; NMC Office Note 46; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service: Silver Spring, MD, USA, 1970.
- Flitcroft, I.D.; Milford, J.R.; Dugdale, G. Relating Point to Area Average Rainfall in Semiarid West Africa and the Implications for Rainfall Estimates Derived from Satellite Data. J. Appl. Meteor. Climatol. 1989, 28, 252–266. [Google Scholar] [CrossRef]
- Arnaud, Y.; Desbois, M.; Gioda, A. Towards a Rainfall Estimation Using Meteosat over Africa; Reprinted from Hydraulics Hydrology of Arid Lands; In Proceedings of the Int’l. Symposium HY & IR Div.IASCE, San Diego, CA, USA, 30 July–2 August 1990. [Google Scholar]
- Ba, M.B.; Frouin, R.; Nicholson, S.E. Satellite-Derived Interannual Variability of West African Rainfall during 1983–1988. J. Appl. Meteor. Climatol. 1995, 34, 411–431. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present. J. Appl. Meteorol. Climatol. 2014, 53, 2805–2822. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.; Rouche, N.; Pierron, F.; Paturel, J.; Satgé, F.; Defrance, D.; Sultan, B.; et al. Evaluation of 23 Gridded Precipitation Datasets across West Africa To Cite This Version: HAL Id: Hal-02626156. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef] [Green Version]
- Atiah, W.A.; Amekudzi, L.K.; Aryee, J.N.A.; Preko, K.; Danuor, S.K. Validation of Satellite and Merged Rainfall Data over Ghana, West Africa. Atmosphere 2020, 11, 859. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef] [Green Version]
- Le Coz, C.; van De Giesen, N. Comparison of Rainfall Products over Sub-Saharan Africa. J. Hydrometeorol. 2020, 21, 553–596. [Google Scholar] [CrossRef]
- Nguyen, P.; Ombadi, M.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Braithwaite, D.; Ashouri, H.; Rose Thorstensen, A. The PERSIANN Family of Global Satellite Precipitation Data: A Review and Evaluation of Products. Hydrol. Earth Syst. Sci. 2018, 22, 5801–5816. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R. Algorithm Theoretical Basis Document (ATBD) NASA Global Precipitation Measurement (GPM) Integrated Multi-SatellitE Retrievals for GPM (IMERG). Nasa 2013, 29. [Google Scholar]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Dezfuli, A.K.; Ichoku, C.M.; Huffman, G.J.; Mohr, K.I.; Selker, J.S.; van de Giesen, N.; Hochreutener, R.; Annor, F.O. Validation of IMERG Precipitation in Africa. J. Hydrometeorol. 2017, 18, 2817–2825. [Google Scholar] [CrossRef]
- McCollum, J.R.; Gruber, A.; Ba, M.B. Discrepancy between Gauges and Satellite Estimates of Rainfall in Equatorial Africa. J. Appl. Meteorol. 2000, 39, 666–679. [Google Scholar] [CrossRef]
- Ravuri, S.; Lenc, K.; Willson, M.; Kangin, D.; Lam, R.; Mirowski, P.; Fitzsimons, M.; Athanassiadou, M.; Kashem, S.; Madge, S.; et al. Skillful Precipitation Nowcasting Using Deep Generative Models of Radar. Nature 2021, 597, 672–677. [Google Scholar] [CrossRef]
- Miao, Q.; Pan, B.; Wang, H.; Hsu, K.; Sorooshian, S. Improving Monsoon Precipitation Prediction Using Combined Convolutional and Long Short Term Memory Neural Network. Water 2019, 11, 977. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Gao, X.; Ihler, A.; Hsu, K.; Sorooshian, S. Deep Neural Networks for Precipitation Estimation from Remotely Sensed Information. In 2016 IEEE Congress on Evolutionary Computation (CEC); IEEE Press: Piscataway, NJ, USA, 2016; pp. 1349–1355. [Google Scholar] [CrossRef]
- Qiangqiang, Y.; Huanfeng, S.; Tongwen, L.; Zhiwei, L.; Shuwen, L.; Yun, J.; Hongzhang, X.; Weiwei, T.; Qianqian, Y.; Jiwen, W.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Schmid, J. The SEVIRI Instrument. Assembly 2000, 1–10. [Google Scholar]
- EUMETSAT MSG Level 1.5 Image Data Format Description. Image 2017, 127.
- van de Giesen, N.; Hut, R.; Selker, J. The Trans-African Hydro-Meteorological Observatory (TAHMO). WIREs Water 2014, 1, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- World Bank Group. Third Ghana Economic Update: Agriculture as an Engine of Growth and Jobs Creation. Africa Region. Report 2018, 1–63. [Google Scholar]
- McSweeney, C.; New, M.; Lizcano, G. UNDP General Climate Change Country Profiles: Ghana; UNDP: New York, NY, USA, 2008; p. 27. [Google Scholar]
- GMet Climatology. Ghana Meteorological Agency. Available online: https://www.meteo.gov.gh/gmet/climatology/ (accessed on 19 October 2021).
- Maranan, M.; Fink, A.H.; Knippertz, P. Rainfall Types over Southern West Africa: Objective Identification, Climatology and Synoptic Environment. Q. J. R. Meteorol. Soc. 2018, 144, 1628–1648. [Google Scholar] [CrossRef] [Green Version]
- Geerts, B.; Dejene, T. Regional and Diurnal Variability of the Vertical Structure of Precipitation Systems in Africa Based on Spaceborne Radar Data. J. Clim. 2005, 18, 893–916. [Google Scholar] [CrossRef] [Green Version]
- Callo-concha, D.; Gaiser, T.; Ewert, F. Farming and Cropping Systems in the West African Sudanian Savanna. WASCAL research area: Northern Ghana, Southwest Burkina Faso and Northern Benin. ZEF Work. Pap. Ser. 100. 2012, 1–49. [Google Scholar]
- Moraux, A.; Dewitte, S.; Cornelis, B.; Munteanu, A. A Deep Learning Multimodal Method for Precipitation Estimation. Remote Sens. 2021, 13, 3278. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Liu, J.; Wang, G. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Pan, B.; Hsu, K.; AghaKouchak, A.; Sorooshian, S. Improving Precipitation Estimation Using Convolutional Neural Network. Water Resour. Res. 2019, 55, 2301–2321. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 2015, 802–810. [Google Scholar]
- Yu, J.; Wang, Z.; Vasudevan, V.; Yeung, L.; Seyedhosseini, M.; Wu, Y. Coca: Contrastive captioners are image-text foundation models. arXiv 2022, arXiv:2205.01917. [Google Scholar]
- Salman, K.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018, arXiv:1811.12808. [Google Scholar] [CrossRef]
- Wang, Y.; You, Y.; Kulie, M. Global Virga Precipitation Distribution Derived from Three Spaceborne Radars and Its Contribution to the False Radiometer Precipitation Detection. Geophys. Res. Lett. 2018, 45, 4446–4455. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A ConvNet for the 2020s. arXiv 2022, arXiv:2201.03545. [Google Scholar] [CrossRef]
Station Code | Station Name | Station Coordinates | Data Gaps [%] | Number of Rain Events | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Latitude | Longitude | Elevation (m MSL) | 2018 | 2019 | 2020 | 2018 | 2019 | 2020 | ||
TA00136 | Notre Dame Seminary/SHS, Navrongo | 10.88°N | 1.07°W | 187 | 85.39 | 20.76 | 4.22 | 6 | 31 | 83 |
TA00251 | Daffiama SHS, Daffiama | 10.42°N | 2.55°W | 330 | 0 | 0 | 0 | 71 | 47 | 68 |
TA00253 | Han SHS, Han | 10.67°N | 2.46°W | 320 | 0.43 | 5.01 | 37.31 | 62 | 25 | 59 |
TA00254 | Bongo SHS, Bongo | 10.91°N | 0.81°W | 223 | 0 | 0 | 24.19 | 59 | 38 | 52 |
TA00259 | Kpandai SHS, Kpandai | 8.48°N | 0.03°W | 215 | 92.62 | 0 | 0.01 | 0 | 50 | 68 |
TA00260 | Bimbilla SHS, Bimbilla | 8.86°N | 0.05°W | 195 | 65.13 | 20.21 | 0.69 | 4 | 64 | 92 |
TA00264 | Gbewaa College of Education, Pusiga | 11.07°N | 0.11°W | 260 | 0 | 0 | 2.74 | 50 | 79 | 74 |
TA00616 | CSIR-SARI, Nyankpala–Tamale | 9.40°N | 1.0°W | 191 | 100 | 31.20 | 0.02 | 0 | 70 | 31 |
Product | Temporal Resolution | Spatial Resolution | Input Data |
---|---|---|---|
IMERG | 30 min | 0.1° × 0.1° (≈10 km × 10 km) | TIR and PMW satellite data, gauge analysis and additional input data |
PERSIANN-CCS | 1 h | 0.04° × 0.04° (≈4 km × 4 km) | TIR satellite data |
Dataset | Total Data Samples | Dry Data Samples | Rain Data Samples |
---|---|---|---|
Training (2018, 2019 and 2020) | 5317 | 4248 | 1069 |
Validation (2020) | 7304 | 7054 | 250 |
Test (2020) | 7303 | 7053 | 250 |
Factor | Possible Values | Description |
---|---|---|
Station | Bimbilla, Bongo, Daffiama, Kpandai, Han, Navrongo, Pusiga, Tamale | Each one of the 8 TAHMO stations |
Month | January to December | Each month of the year |
Time of the day | Day | 6 AM to 6 PM in the local time (constant throughout the year near equator) |
Night | 6 PM to 6 AM | |
Dry | <1 mm/3 h | |
Rain category | Very light rain | 1 mm/3 h to 1 mm/h |
Light rain | <2.5 mm/h | |
Moderate rain | 2.5 mm/h to 7.6 mm/h |
Model | Accuracy | F1–Score | POD | SR | FBias | CSI |
---|---|---|---|---|---|---|
RainRunner | 0.94 | 0.47 | 0.78 | 0.33 | 2.36 | 0.30 |
RainRunner-R | 0.94 | 0.46 | 0.77 | 0.33 | 2.34 | 0.30 |
PERSIANN-CCS | 0.94 | 0.43 | 0.63 | 0.28 | 2.26 | 0.24 |
IMERG Early Run | 0.94 | 0.47 | 0.73 | 0.35 | 2.10 | 0.31 |
IMERG Late Run | 0.95 | 0.49 | 0.78 | 0.37 | 2.14 | 0.33 |
IMERG Final Run | 0.95 | 0.52 | 0.82 | 0.38 | 2.16 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estébanez-Camarena, M.; Taormina, R.; van de Giesen, N.; ten Veldhuis, M.-C. The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna. Remote Sens. 2023, 15, 1922. https://doi.org/10.3390/rs15071922
Estébanez-Camarena M, Taormina R, van de Giesen N, ten Veldhuis M-C. The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna. Remote Sensing. 2023; 15(7):1922. https://doi.org/10.3390/rs15071922
Chicago/Turabian StyleEstébanez-Camarena, Mónica, Riccardo Taormina, Nick van de Giesen, and Marie-Claire ten Veldhuis. 2023. "The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna" Remote Sensing 15, no. 7: 1922. https://doi.org/10.3390/rs15071922
APA StyleEstébanez-Camarena, M., Taormina, R., van de Giesen, N., & ten Veldhuis, M. -C. (2023). The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna. Remote Sensing, 15(7), 1922. https://doi.org/10.3390/rs15071922