Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer Learning Model
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data in Heihe River Basin
2.3. External Data of Heihe River Basin
2.4. Meteorological and Remote Sensing Forcing Data
3. Method
3.1. Transfer Learning Models
3.2. BTCH Method
3.3. Evaluation Metrics
3.4. The Upscaling Model Framework
4. Results and Discussion
4.1. Effectiveness of External Data for Upscaling Model
4.2. Comparison of the Results from Five Transfer Learning Models
4.3. Accuracy Validation and Time Series Analysis
4.4. Spatio-Temporal Characteristics of Fused Latent Heat Flux Upscaling Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A Process Driving Mass Transport and Energy Exchange in the Soil-Plant-Atmosphere-Climate System. Rev. Geophys. 2012, 50, RG3002. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Agee, E.; Wang, J.; Ivanov, V.Y. Estimation of Evapotranspiration of Amazon Rainforest Using the Maximum Entropy Production Method. Geophys. Res. Lett. 2019, 46, 1402–1412. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Qiu, G. Quantifying the Evapotranspiration Rate and Its Cooling Effects of Urban Hedges Based on Three-Temperature Model and Infrared Remote Sensing. Remote Sens. 2019, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Dickinson, R.E. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A Comparison of Eddy-Covariance and Large Aperture Scintillometer Measurements with Respect to the Energy Balance Closure Problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.J.; Cheng, J.; Zhao, S.H.; Jia, K.; Xie, X.H.; Sun, L. Estimation of Farmland Evapotranspiration: A Review of Methods Using Thermal Infrared Remote Sensing Data. Adv. Earth Sci. 2012, 27, 1308–1318. [Google Scholar]
- Zheng, C.; Liu, S.; Song, L.; Xu, Z.; Guo, J.; Ma, Y.; Ju, Q.; Wang, J. Comparison of Sensible and Latent Heat Fluxes from Optical-Microwave Scintillometers and Eddy Covariance Systems with Respect to Surface Energy Balance Closure. Agric. For. Meteorol. 2023, 331, 109345. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Idso, S.B. Wheat Canopy Temperature: A Practical Tool for Evaluating Water Requirements. Water Resour. Res. 1977, 13, 651–656. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, Q.; Fadhil, A.M.; Li, Y.; Zhao, S.; Liu, S.; Sui, X.; Dong, H. Evaluation of EDI Derived from the Exponential Evapotranspiration Model for Monitoring China’s Surface Drought. Environ. Earth Sci. 2011, 63, 425–436. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J. Evaporation from Sparse Crops-an Energy Combination Theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Bateni, S.M.; Entekhabi, D. Surface Heat Flux Estimation with the Ensemble Kalman Smoother: Joint Estimation of State and Parameters. Water Resour. Res. 2012, 48, 1–16. [Google Scholar] [CrossRef]
- He, X.; Xu, T.; Bateni, S.M.; Neale, C.M.U.; Auligne, T.; Liu, S.; Wang, K.; Mao, K.; Yao, Y. Evaluation of the Weak Constraint Data Assimilation Approach for Estimating Turbulent Heat Fluxes at Six Sites. Remote Sens. 2018, 10, 1994. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; He, X.; Bateni, S.M.; Auligne, T.; Liu, S.; Xu, Z.; Zhou, J.; Mao, K. Mapping Regional Turbulent Heat Fluxes via Variational Assimilation of Land Surface Temperature Data from Polar Orbiting Satellites. Remote Sens. Environ. 2019, 221, 444–461. [Google Scholar] [CrossRef]
- Riihelä, A.; Laine, V.; Manninen, T.; Palo, T.; Vihma, T. Validation of the Climate-SAF Surface Broadband Albedo Product: Comparisons with in Situ Observations over Greenland and the Ice-Covered Arctic Ocean. Remote Sens. Environ. 2010, 114, 2779–2790. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling Evapotranspiration Measurements from Multi-Site to the Satellite Pixel Scale over Heterogeneous Land Surfaces. Agric. For. Meteorol. 2016, 230–231, 97–113. [Google Scholar] [CrossRef]
- Greifeneder, F.; Notarnicola, C.; Bertoldi, G.; Niedrist, G.; Wagner, W. From Point to Pixel Scale: An Upscaling Approach for In Situ Soil Moisture Measurements. Vadose Zone J. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Sun, G.; Alstad, K.; Chen, J.; Chen, S.; Ford, C.R.; Lin, G.; Liu, C.; Lu, N.; McNulty, S.G.; Miao, H.; et al. A General Predictive Model for Estimating Monthly Ecosystem Evapotranspiration. Ecohydrology 2011, 4, 245–255. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Z.; Liu, S.; Jin, R.; Yang, G.; Tan, L. Estimating the Spatial Distribution of Soil Moisture Based on Bayesian Maximum Entropy Method with Auxiliary Data from Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 54–66. [Google Scholar] [CrossRef]
- Hu, M.; Wang, J.; Ge, Y.; Liu, M.; Liu, S.; Xu, Z.; Xu, T. Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere 2015, 6, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Alemohammad, S.H.; Fang, B.; Konings, A.G.; Aires, F.; Green, J.K.; Kolassa, J.; Miralles, D.; Prigent, C.; Gentine, P. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A Statistically Based Estimate of Global Surface Turbulent Fluxes and Gross Primary Productivity Using Solar-Induced Fluorescence. Biogeosciences 2017, 14, 4101–4124. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X.; et al. Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel. J. Geophys. Res. Atmos. 2018, 123, 6777–6803. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Bondeau, A. Towards Global Empirical Upscaling of FLUXNET Eddy Covariance Observations: Validation of a Model Tree Ensemble Approach Using a Biosphere Model. Biogeosciences 2009, 6, 2001–2013. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.F.; Walker, W.R.; McKee, M. Forecasting Daily Potential Evapotranspiration Using Machine Learning and Limited Climatic Data. Agric. Water Manag. 2011, 98, 553–562. [Google Scholar] [CrossRef]
- Chaney, N.W.; Herman, J.D.; Ek, M.B.; Wood, E.F. Deriving Global Parameter Estimates for the Noah Land Surface Model Using FLUXNET and Machine Learning. J. Geophys. Res. Atmos. 2016, 121, 13218–13235. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Z.; Liu, S.; He, X.; Meng, Y.; Xu, Z.; Xia, Y.; Xiao, J.; Zhang, Y.; Ma, Y.; et al. Evaluating Different Machine Learning Methods for Upscaling Evapotranspiration from Flux Towers to the Regional Scale. J. Geophys. Res. Atmos. 2018, 123, 8674–8690. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting Carbon Dioxide and Energy Fluxes across Global FLUXNET Sites with Regression Algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved Daily SMAP Satellite Soil Moisture Prediction over China Using Deep Learning Model with Transfer Learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Wu, P.; Dietterich, T.G. Improving SVM Accuracy by Training on Auxiliary Data Sources. Proc. Twenty-First Int. Conf. Mach. Learn. 2004, 110, =871–=878. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, N.D.; Platt, J.C. Learning to Learn with the Informative Vector Machine. Proc. Twenty-First Int. Conf. Mach. Learn. 2004, 65, 512–519. [Google Scholar] [CrossRef]
- Schwaighofer, A.; Tresp, V.; Yu, K. Learning Gaussian Process Kernels via Hierarchical Bayes. Adv. Neural Inf. Process. Syst. 2005, 17, 1209–1216. [Google Scholar]
- Mihalkova, L.; Huynh, T.; Mooney, R.J. Mapping and Revising Markov Logic Networks for Transfer Learning. Proc. Natl. Conf. Artif. Intell. 2007, 1, 608–614. [Google Scholar]
- Zhao, G.; Pang, B.; Xu, Z.; Cui, L.; Wang, J.; Zuo, D.; Peng, D. Improving Urban Flood Susceptibility Mapping Using Transfer Learning. J. Hydrol. 2021, 602, 126777. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of Clear-Sky Land Surface Longwave Radiation from MODIS Data Products by Merging Multiple Models. J. Geophys. Res. Atmos. 2012, 117, D22107. [Google Scholar] [CrossRef]
- Hobeichi, S.; Abramowitz, G.; Evans, J.; Ukkola, A. Derived Optimal Linear Combination Evapotranspiration (DOLCE): A Global Gridded Synthesis ET Estimate. Hydrol. Earth Syst. Sci. 2018, 22, 1317–1336. [Google Scholar] [CrossRef] [Green Version]
- Che, T.; Li, X.; Liu, S.; Li, H.; Xu, Z.; Tan, J.; Zhang, Y.; Ren, Z.; Xiao, L.; Deng, J.; et al. Integrated Hydrometeorological, Snow and Frozen-Ground Observations in the Alpine Region of the Heihe River Basin, China. Earth Syst. Sci. Data 2019, 11, 1483–1499. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin—Scale Land Surface Processes Observatory in China. Vadose Zo. J. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of Surface Energy Flux Measurement Systems Used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 2013, 118, 13140–13157. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (an Observation System of Meteorological Elements Gradient of Xiyinghe Station, 2020). Natl. Tibet. Plateau Data Cent. 2021. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (Eddy Covariance System of Xiyinghe Station, 2019). Natl. Tibet. Plateau Data Cent. 2020. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (an Observation System of Meteorological Elements Gradient of Liancheng Station, 2019). Natl. Tibet. Plateau Data Cent. 2020. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (Eddy Covariance System of Liancheng Station, 2019). Natl. Tibet. Plateau Data Cent. 2020. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (an Observation System of Meteorological Elements Gradient of Xiyinghe Station, 2019). Natl. Tibet. Plateau Data Cent. 2020. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, R. Cold and Arid Research Network of Lanzhou University (Eddy Covariance System of Xiyinghe Station, 2020). Natl. Tibet. Plateau Data Cent. 2021. [Google Scholar] [CrossRef]
- Li, X.-Y.; Ma, Y.; Huang, Y.; Hu, X.; Wu, X.-C.; Wang, P.; Li, G.; Zhang, S.; Wu, H.; Jiang, Z.; et al. Evaporation and Surface Energy Budget over the Largest High-Altitude Saline Lake on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2016, 121, 10470–10485. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Ma, Y.; Hu, G.; Hu, X.; Wu, X.; Wang, P.; Huang, Y.; Cui, B.; Wei, J. Qinghai Lake Basin Critical Zone Observatory on the Qinghai—Tibet Plateau. Vadose Zo. J. 2018, 17, 1–11. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Shi, X.; Han, X.; Luo, L.; Wang, L. Dynamic Downscaling of Near-Surface Air Temperature at the Basin Scale Using WRF-a Case Study in the Heihe River Basin, China. Front. Earth Sci. 2012, 6, 314–323. [Google Scholar] [CrossRef]
- Pan, X.; Li, X. Validation of WRF Model on Simulating Forcing Data for Heihe River Basin. Sci. Cold Arid Reg. 2011, 3, 344–357. [Google Scholar] [CrossRef]
- Pan, X.; Ma, H. Near-Surface Hourly Atmospheric Driving Data at 0. 05 * 0. 05 Based on WRF Model Simulation over 2000-2016 Years for the Heihe River Basin. Plateau Meteorol. 2019, 38, 206–216. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Montzka, C.; Chai, L.; Liu, S.; Ge, Y.; Liu, J.; Lu, Z.; He, X.; Zheng, J.; et al. Inter-Comparison of Several Soil Moisture Downscaling Methods over the Qinghai-Tibet Plateau, China. J. Hydrol. 2021, 592, 125616. [Google Scholar] [CrossRef]
- Hu, Z.; Chai, L.; Crow, W.T.; Liu, S.; Zhu, Z.; Zhou, J.; Qu, Y.; Liu, J.; Yang, S.; Lu, Z. Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 3063. [Google Scholar] [CrossRef]
- Xiong, Z.; Yan, X. Building a High-Resolution Regional Climate Model for the Heihe River Basin and Simulating Precipitation over This Region. Chinese Sci. Bull. 2013, 58, 4670–4678. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- McClelland, J.L.; Rumelhart, D.E. An Interactive Activation Model of Context Effects in Letter Perception: I. An Account of Basic Findings. Psychol. Rev. 1981, 88, 375–407. [Google Scholar] [CrossRef]
- He, X.; Xu, T.; Xia, Y.; Bateni, S.M.; Guo, Z.; Liu, S.; Mao, K.; Zhang, Y.; Feng, H.; Zhao, J. A Bayesian Three-Cornered Hat (BTCH) Method: Improving the Terrestrial Evapotranspiration Estimation. Remote Sens. 2020, 12, 878. [Google Scholar] [CrossRef] [Green Version]
- Tavella, P.; Premoli, A. Estimating the Instabilities of N Clocks by Measuring Differences of Their Readings. Metrologia 1994, 30, 479–486. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Z.; Xia, Y.; Ferreira, V.G.; Liu, S.; Wang, K.; Yao, Y.; Zhang, X.; Zhao, C. Evaluation of Twelve Evapotranspiration Products from Machine Learning, Remote Sensing and Land Surface Models over Conterminous United States. J. Hydrol. 2019, 578, 124105. [Google Scholar] [CrossRef]
NO. | Site Name | Longitude (W°) | Latitude (N°) | Land Cover | Period |
---|---|---|---|---|---|
1 | Arou | 100.4643 | 38.0473 | GRA | 2013/1–2019/12 |
2 | Daman | 100.3722 | 38.8555 | CRO | 2013/1–2019/12 |
3 | Dashalong | 98.9406 | 38.8399 | GRA | 2013/8–2019/12 |
4 | Huazhaizi desert steppe | 100.3186 | 38.7652 | BSV | 2016/1–2017/12 |
5 | Desert | 100.9872 | 42.1135 | BSV | 2016/1–2019/12 |
6 | Mixed forest | 101.1335 | 41.9903 | DBF | 2013/7–2019/12 |
7 | Sidaoqiao | 101.1374 | 42.0012 | CSH | 2016/1–2019/12 |
8 | Yakou | 100.2421 | 38.0142 | GRA | 2016/1–2019/12 |
9 | Bajitan Gobi | 100.3042 | 38.9150 | BSV | 2012/8–2015/4 |
10 | Jingyangling | 101.1160 | 37.8384 | GRA | 2018/1–2019/12 |
11 | Ponit 1 | 100.3582 | 38.8932 | CRO | 2012/6–2012/9 |
12 | Ponit 2 | 100.3541 | 38.8870 | CRO | 2012/6–2012/9 |
13 | Ponit 3 | 100.3763 | 38.8905 | CRO | 2012/6–2012/9 |
14 | Ponit 4 | 100.3575 | 38.8775 | CRO | 2012/6–2012/9 |
15 | Ponit 5 | 100.3507 | 38.8757 | CRO | 2012/6–2012/9 |
16 | Ponit 6 | 100.3597 | 38.8712 | CRO | 2012/6–2012/9 |
17 | Ponit 7 | 100.3652 | 38.8768 | CRO | 2012/6–2012/9 |
18 | Ponit 8 | 100.3765 | 38.8725 | CRO | 2012/6–2012/9 |
19 | Ponit 9 | 100.3855 | 38.8724 | CRO | 2012/6–2012/9 |
20 | Ponit 11 | 100.3420 | 38.8699 | CRO | 2012/6–2012/9 |
21 | Ponit 12 | 100.3663 | 38.8652 | CRO | 2012/6–2012/9 |
NO. | Site Name | Longitude (W°) | Latitude (N°) | Land Cover | Period |
---|---|---|---|---|---|
22 | Xiyinghe | 101.8550 | 37.5610 | GRA | 2019–2020 |
23 | Liancheng | 102.7370 | 36.6920 | GRA | 2019 |
24 | Subalpine shrub | 100.1010 | 37.5210 | CSH | 2019–2020 |
25 | Alpine meadow and grassland | 98.5949 | 37.7032 | GRA | 2018–2020 |
26 | Temperate steppe | 100.2358 | 37.2469 | GRA | 2019–2020 |
NO. | Site Name | Latitude (N°) | Longitude (W°) | Land Cover | Period |
---|---|---|---|---|---|
1 | AU-DaP | −14.0633 | 131.3181 | GRA | 2007–2013 |
2 | AU-Emr | −23.8587 | 148.4746 | GRA | 2011–2013 |
3 | AU-Rig | −36.6499 | 145.5759 | GRA | 2011–2014 |
4 | AU-Stp | −17.1507 | 133.3502 | GRA | 2008–2014 |
5 | AU-TTE | −22.2870 | 133.6400 | GRA | 2012–2014 |
6 | AU-Ync | −34.9893 | 146.2907 | GRA | 2012–2014 |
7 | BE-Lon | 50.5516 | 4.7462 | CRO | 2004–2014 |
8 | CH-Cha | 47.2102 | 8.4104 | GRA | 2006–2012 |
9 | CH-Oe1 | 47.2858 | 7.7319 | GRA | 2003–2008 |
10 | CN-Cng | 44.5934 | 123.5092 | GRA | 2007–2010 |
11 | CN-Du2 | 42.0467 | 116.2836 | GRA | 2007–2008 |
12 | CN-Du3 | 42.0551 | 116.2809 | GRA | 2009–2010 |
13 | CN-HaM | 37.3700 | 101.1800 | GRA | 2002–2004 |
14 | CZ-BK2 | 49.4944 | 18.5429 | GRA | 2006–2012 |
15 | DE-Geb | 51.0997 | 10.9146 | CRO | 2001–2011 |
16 | DE-Kli | 50.8931 | 13.5224 | CRO | 2004–2014 |
17 | DE-Seh | 50.8706 | 6.4497 | CRO | 2007–2010 |
18 | DK-Fou | 56.4842 | 9.5872 | CRO | 2005 |
19 | FR-Gri | 48.8442 | 1.9519 | CRO | 2005–2012 |
20 | IT-BCi | 40.5237 | 14.9574 | CRO | 2004–2014 |
21 | IT-CA2 | 42.3772 | 12.0260 | CRO | 2011–2012 |
22 | IT-MBo | 46.0147 | 11.0458 | GRA | 2004–2013 |
23 | PA-SPs | 9.3138 | −79.6314 | GRA | 2007–2009 |
24 | RU-Ha1 | 54.7252 | 90.0022 | GRA | 2002–2004 |
25 | US-AR1 | 36.4267 | −99.4200 | GRA | 2009 |
26 | US-AR2 | 36.6358 | −99.5975 | GRA | 2009 |
27 | US-ARb | 35.5497 | −98.0402 | GRA | 2005–2006 |
28 | US-ARc | 35.5465 | −98.0400 | GRA | 2005–2006 |
29 | US-ARM | 36.6058 | −97.4888 | CRO | 2003–2012 |
30 | US-CRT | 41.6285 | −83.3471 | CRO | 2011–2013 |
31 | US-KS2 | 28.6086 | −80.6715 | CSH | 2003–2006 |
32 | US-Lin | 36.3566 | −119.0922 | CRO | 2009 |
33 | US-SRG | 31.7894 | −110.8277 | GRA | 2008–2014 |
34 | US-Tw2 | 38.0969 | −121.6365 | CRO | 2012–2013 |
35 | US-Tw3 | 38.1152 | −121.6469 | CRO | 2013–2014 |
36 | US-Var | 38.4133 | −120.9508 | GRA | 2000–2014 |
37 | US-Wkg | 31.7365 | −109.9419 | GRA | 2004–2014 |
Variable | Dataset | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Ta/Pa/P/RH/WS | The atmospheric forcing data (2000–2021) | 0.05° × 0.05° | Hourly |
SM | 2018, SMHiRes, V1 | 0.05° × 0.05° | Daily |
Rn | Simulated forcing dataset (1980–2080) | 3 km × 3 km | 6 h |
LAI | MCD15A2H | 500 m × 500 m | 8 days |
NDVI | MOD13A2 | 1 km × 1 km | 16 days |
LC | MCD12Q1 | 500 m × 500 m | Yearly |
DEM | SRTMDEM | 90 m × 90 m | - |
SLOPE | SRTMSLOPE | 90 m × 90 m | - |
ASPECT | SRTMASPECT | 90 m × 90 m | - |
Variable | BSV | CRO | CSH | GRA |
---|---|---|---|---|
Ta | 0.3574 | 0.7303 | 0.7489 | 0.6702 |
RH | 0.2683 | −0.0434 | −0.1845 | 0.1553 |
P | 0.2690 | 0.4170 | 0.0651 | 0.2341 |
Rn | 0.4511 | 0.8280 | 0.6907 | 0.7270 |
SM | 0.5056 | 0.4879 | 0.1659 | 0.4206 |
WS | −0.0642 | −0.0359 | −0.0153 | −0.0862 |
VPD | 0.1525 | 0.5953 | 0.7589 | 0.4242 |
Pa | −0.2647 | −0.2358 | −0.2081 | 0.0460 |
ET0 | 0.4073 | 0.8280 | 0.5333 | 0.7550 |
ASPECT | −0.2362 | 0.1563 | 0.0300 | 0.0320 |
DEM | 0.1491 | 0.2238 | 0.0300 | −0.0223 |
SLOPE | 0.1723 | 0.2288 | 0.0300 | −0.0474 |
NDVI | 0.4204 | 0.7486 | 0.7846 | 0.6044 |
LAI | 0.4555 | 0.6448 | 0.8075 | 0.4996 |
DOY | 0.1275 | 0.0507 | 0.0614 | 0.0160 |
month | 0.1277 | 0.0511 | 0.0632 | 0.0181 |
Site Name | Arou | Daman | Sidaoqiao | Mean | ||||
---|---|---|---|---|---|---|---|---|
RMSE (W/m2) | R2 | RMSE (W/m2) | R2 | RMSE (W/m2) | R2 | RMSE (W/m2) | R2 | |
ANN | 20.30 | 0.79 | 19.90 | 0.80 | 22.26 | 0.76 | 20.82 | 0.78 |
RF | 18.37 | 0.83 | 21.13 | 0.78 | 23.32 | 0.75 | 20.94 | 0.79 |
XGBoost | 23.32 | 0.73 | 26.41 | 0.67 | 24.36 | 0.72 | 24.70 | 0.71 |
BTCH | 17.23 | 0.85 | 18.48 | 0.83 | 20.80 | 0.80 | 18.84 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Xu, T.; Zhang, G.; He, X.; Liu, S.; Xu, Z.; Zhao, L.; Xu, Z.; Wang, J. Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer Learning Model. Remote Sens. 2023, 15, 1901. https://doi.org/10.3390/rs15071901
Lin J, Xu T, Zhang G, He X, Liu S, Xu Z, Zhao L, Xu Z, Wang J. Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer Learning Model. Remote Sensing. 2023; 15(7):1901. https://doi.org/10.3390/rs15071901
Chicago/Turabian StyleLin, Jing, Tongren Xu, Gangqiang Zhang, Xiangping He, Shaomin Liu, Ziwei Xu, Lifang Zhao, Zongbin Xu, and Jiancheng Wang. 2023. "Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer Learning Model" Remote Sensing 15, no. 7: 1901. https://doi.org/10.3390/rs15071901
APA StyleLin, J., Xu, T., Zhang, G., He, X., Liu, S., Xu, Z., Zhao, L., Xu, Z., & Wang, J. (2023). Upscaling of Latent Heat Flux in Heihe River Basin Based on Transfer Learning Model. Remote Sensing, 15(7), 1901. https://doi.org/10.3390/rs15071901