Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Meteorological Data
2.1.1. Himawari-7 Data
2.1.2. Ground Weather Stations Data
2.2. Extreme Gradient Boosting
2.3. Heuristic Algorithms
2.3.1. Differential Evolution (DE) Algorithm
- (1)
- Initialization population
- (2)
- Variation
- (3)
- Crossover
- (4)
- Selection
2.3.2. Flower Pollination Algorithm (FPA)
- (1)
- Cross-pollination formula:
- (2)
- Self-pollination formula:
2.3.3. Grasshopper Optimization Algorithm (GOA)
2.3.4. Gray Wolf Optimizer (GWO) Algorithm
2.4. Input Combinations Based on Satellite and Ground Weather Station Data
2.5. Input Combinations Based on Cross-Station Application
2.6. Statistical Indicators
3. Results
3.1. Accuracy Assessment of Diffuse Solar Radiation Data from Satellites
3.2. Model Performance Based on Himawari-7 Data
Models | Combinations/Statistical Indicators | RMSE | R2 | MAE | MBE |
---|---|---|---|---|---|
XGBoost_DE1-8 | S1 | 2.084 | 0.652 | 1.577 | 0.164 |
S2 | 2.094 | 0.688 | 1.600 | 0.011 | |
S3 | 2.019 | 0.652 | 1.553 | 0.215 | |
S4 | 2.110 | 0.673 | 1.618 | −0.033 | |
S5 | 2.058 | 0.654 | 1.563 | −0.383 | |
S6 | 1.970 | 0.692 | 1.499 | −0.198 | |
S7 | 2.033 | 0.670 | 1.554 | −0.186 | |
S8 | 1.948 | 0.686 | 1.484 | −0.120 | |
XGBoost_FPA1-8 | S1 | 2.112 | 0.642 | 1.607 | 0.205 |
S2 | 2.032 | 0.673 | 1.548 | 0.195 | |
S3 | 2.040 | 0.660 | 1.560 | 0.182 | |
S4 | 1.970 | 0.673 | 1.493 | 0.047 | |
S5 | 2.081 | 0.669 | 1.586 | −0.261 | |
S6 | 2.078 | 0.682 | 1.564 | −0.271 | |
S7 | 2.016 | 0.678 | 1.531 | −0.142 | |
S8 | 2.022 | 0.680 | 1.536 | −0.166 | |
XGBoost_GOA1-8 | S1 | 1.905 | 0.678 | 1.451 | 0.038 |
S2 | 1.858 | 0.699 | 1.416 | −0.042 | |
S3 | 1.878 | 0.686 | 1.433 | 0.025 | |
S4 | 1.863 | 0.696 | 1.418 | 0.022 | |
S5 | 1.889 | 0.695 | 1.425 | −0.263 | |
S6 | 1.872 | 0.706 | 1.41 | −0.236 | |
S7 | 1.871 | 0.703 | 1.413 | −0.193 | |
S8 | 1.856 | 0.709 | 1.409 | −0.24 | |
XGBoost_GWO1-8 | S1 | 1.905 | 0.68 | 1.457 | 0.035 |
S2 | 1.848 | 0.701 | 1.416 | 0.015 | |
S3 | 1.889 | 0.685 | 1.447 | 0.069 | |
S4 | 1.853 | 0.696 | 1.421 | 0.029 | |
S5 | 1.902 | 0.696 | 1.434 | −0.225 | |
S6 | 1.858 | 0.713 | 1.409 | −0.239 | |
S7 | 1.888 | 0.701 | 1.426 | −0.193 | |
S8 | 1.851 | 0.713 | 1.402 | −0.237 |
3.3. Model Performance Based on Ground Weather Station Data
Models | Combination/Statistical Indicators | RMSE | R2 | MAE | MBE |
---|---|---|---|---|---|
XGBoost_DE9-12 | L1 | 1.478 | 0.821 | 1.070 | 0.057 |
L2 | 1.605 | 0.819 | 1.167 | 0.056 | |
L3 | 1.480 | 0.814 | 1.082 | 0.148 | |
L4 | 1.662 | 0.808 | 1.235 | 0.140 | |
XGBoost_FPA9-12 | L1 | 1.643 | 0.777 | 1.215 | 0.321 |
L2 | 1.495 | 0.800 | 1.097 | 0.224 | |
L3 | 1.695 | 0.812 | 1.251 | 0.086 | |
L4 | 1.523 | 0.808 | 1.104 | 0.310 | |
XGBoost_GOA9-12 | L1 | 1.390 | 0.832 | 1.005 | 0.186 |
L2 | 1.392 | 0.831 | 1.000 | 0.162 | |
L3 | 1.362 | 0.834 | 0.979 | 0.129 | |
L4 | 1.378 | 0.831 | 0.989 | 0.170 | |
XGBoost_GWO9-12 | L1 | 1.408 | 0.828 | 1.010 | 0.178 |
L2 | 1.393 | 0.830 | 0.997 | 0.173 | |
L3 | 1.375 | 0.834 | 0.990 | 0.158 | |
L4 | 1.374 | 0.833 | 0.988 | 0.159 |
3.4. Model Performance Based on Cross-Station Application
Stations | Models | Combinations/Statistical Indicators | RMSE | R2 | MAE | MBE |
---|---|---|---|---|---|---|
Harbin | XGBoost_DE13 | S7 | 1.569 | 0.789 | 1.211 | −0.651 |
XGBoost_DE14 | S8 | 1.496 | 0.790 | 1.129 | −0.526 | |
XGBoost_FPA13 | S7 | 1.457 | 0.805 | 1.055 | −0.599 | |
XGBoost_FPA14 | S8 | 1.516 | 0.785 | 1.153 | −0.392 | |
XGBoost_GOA13 | S7 | 1.401 | 0.810 | 1.009 | −0.520 | |
XGBoost_GOA14 | S8 | 1.407 | 0.784 | 1.016 | −0.200 | |
XGBoost_GWO13 | S7 | 1.363 | 0.807 | 0.982 | −0.357 | |
XGBoost_GWO14 | S8 | 1.380 | 0.794 | 1.001 | −0.246 | |
Ejinaqi | XGBoost_DE13 | S7 | 1.551 | 0.342 | 1.278 | 0.593 |
XGBoost_DE14 | S8 | 1.419 | 0.410 | 1.196 | 0.508 | |
XGBoost_FPA13 | S7 | 1.452 | 0.393 | 1.238 | 0.568 | |
XGBoost_FPA14 | S8 | 1.427 | 0.389 | 1.162 | 0.446 | |
XGBoost_GOA13 | S7 | 1.499 | 0.372 | 1.298 | 0.622 | |
XGBoost_GOA14 | S8 | 1.510 | 0.342 | 1.263 | 0.548 | |
XGBoost_GWO13 | S7 | 1.452 | 0.413 | 1.266 | 0.593 | |
XGBoost_GWO14 | S8 | 1.436 | 0.418 | 1.185 | 0.535 | |
Beijing | XGBoost_DE13 | S7 | 1.839 | 0.763 | 1.365 | 0.589 |
XGBoost_DE14 | S8 | 1.942 | 0.837 | 1.519 | −1.144 | |
XGBoost_FPA13 | S7 | 1.831 | 0.770 | 1.376 | 0.600 | |
XGBoost_FPA14 | S8 | 1.725 | 0.784 | 1.316 | 0.247 | |
XGBoost_GOA13 | S7 | 1.424 | 0.831 | 1.150 | −0.106 | |
XGBoost_GOA14 | S8 | 1.457 | 0.825 | 1.173 | −0.226 | |
XGBoost_GWO13 | S7 | 1.409 | 0.833 | 1.153 | 0.061 | |
XGBoost_GWO14 | S8 | 1.415 | 0.834 | 1.161 | −0.068 | |
Wuhan | XGBoost_DE13 | S7 | 1.886 | 0.799 | 1.506 | −0.800 |
XGBoost_DE14 | S8 | 1.804 | 0.852 | 1.457 | −1.081 | |
XGBoost_FPA13 | S7 | 1.754 | 0.831 | 1.372 | −0.844 | |
XGBoost_FPA14 | S8 | 1.815 | 0.848 | 1.447 | −1.072 | |
XGBoost_GOA13 | S7 | 1.709 | 0.833 | 1.334 | −0.756 | |
XGBoost_GOA14 | S8 | 1.795 | 0.849 | 1.433 | −1.050 | |
XGBoost_GWO13 | S7 | 1.745 | 0.822 | 1.369 | −0.744 | |
XGBoost_GWO14 | S8 | 1.829 | 0.843 | 1.450 | −1.070 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Variables | |
Ra | Extra-terrestrial solar radiation (MJ·m−2·d−1) |
Tmax | maximum temperature from weather station(°C) |
Tmin | minimum temperature from weather station(°C) |
Rs | global solar radiation from weather station (MJ·m−2·d−1) |
RH | Daily average air relative humidity from weather station (%) |
P | precipitation from weather station(mm) |
Tmax_s | maximum temperature from satellite(°C) |
Tmin_s | minimum temperature from satellite(°C) |
Rs_s | global solar radiation from satellite (MJ·m−2·d−1) |
Rd_s | diffuse solar radiation from satellite (MJ·m−2·d−1) |
RH_s | Daily average air relative humidity from satellite (%) |
P_s | precipitation from satellite(mm) |
Abbreviations | |
XGBoost | Extreme gradient boosting |
DE | Differential Evolution Algorithm |
FPA | Flower Pollination Algorithm |
GOA | Grasshopper Optimization Algorithm |
GWO | Grey Wolf Optimizer Algorithm |
RMSE | root mean square error (MJ·m−2·d−1) |
R2 | coefficient of determination |
MAE | mean absolute error (MJ·m−2·d−1) |
MBE | mean bias error (MJ·m−2·d−1) |
NSRDB | National Solar radiation Database |
ANN | Artificial Neural Network |
SVM | Support Vector Machine |
FFA | firefly algorithm |
CNQR | copula-base nonlinear quantile regression |
RF | Random Forest |
KNN | K- Nearest Neighbor |
PSO | Particle Swarm Optimization |
WOA | Whale Optimization Algorithm |
BAT | Bat Algorithm |
ET0 | reference evapotranspiration |
GNF | Generalized Neuro-fuzzy |
References
- Khosravi, A.; Koury, R.N.N.; Machado, L.; Pabon, J.J.G. Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. J. Clean. Prod. 2018, 176, 63–75. [Google Scholar] [CrossRef]
- Jiang, Y. Estimation of monthly mean daily diffuse radiation in China. Appl. Energ. 2009, 86, 1458–1464. [Google Scholar] [CrossRef]
- Khorasanizadeh, H.; Mohammadi, K. Diffuse solar radiation on a horizontal surface: Reviewing and categorizing the empirical models. Renew. Sustain. Energy Rev. 2016, 53, 338–362. [Google Scholar] [CrossRef]
- Fan, J.; Chen, B.; Wu, L.; Zhang, F.; Lu, X.; Xiang, Y. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy 2018, 144, 903–914. [Google Scholar] [CrossRef]
- Aler, R.; Galván, I.M.; Ruiz-Arias, J.A.; Gueymard, C.A. Improving the separation of direct and diffuse solar radiation components using machine learning by gradient boosting. Sol. Energy 2017, 150, 558–569. [Google Scholar] [CrossRef]
- Liu, B.Y.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Ali, K.H. Empirical Model for Estimating Global Solar and Diffuse Solar Radiations on Horizontal Surfaces. J. Energy Technol. Policy 2016, 6, 40–50. [Google Scholar]
- Sabzpooshani, M.; Mohammadi, K. Establishing new empirical models for predicting monthly mean horizontal diffuse solar radiation in city of Isfahan, Iran. Energy 2014, 69, 571–577. [Google Scholar] [CrossRef]
- Mohammed, O.W.; Yanling, G. Estimation of Diffuse Solar Radiation in the Region of Northern Sudan. Int. Energy J. 2016, 16, 163–172. [Google Scholar]
- Jiang, Y. Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models. Energ. Policy 2008, 36, 3833–3837. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Chen, Y.; Wang, D.; Wang, Y.; Zhu, Y. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China. Renew. Energ. 2020, 146, 1101–1112. [Google Scholar] [CrossRef]
- Husain, S.; Khan, U.A. Machine learning models to predict diffuse solar radiation based on diffuse fraction and diffusion coefficient models for humid-subtropical climatic zone of India. Clean. Eng. Technol. 2021, 5, 100262. [Google Scholar] [CrossRef]
- Karaveli, A.B.; Akinoglu, B.G. Comparisons and critical assessment of global and diffuse solar irradiation estimation methodologies. Int. J. Green Energy 2018, 15, 325–332. [Google Scholar] [CrossRef]
- Rusen, S.E.; Konuralp, A. Quality control of diffuse solar radiation component with satellite-based estimation methods. Renew. Energ. 2020, 145, 1772–1779. [Google Scholar] [CrossRef]
- Fan, J.; Wu, L.; Ma, X.; Zhou, H.; Zhang, F. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions. Renew. Energ. 2020, 145, 2034–2045. [Google Scholar] [CrossRef]
- Ma, R.; Letu, H.; Yang, K.; Wang, T.; Shi, C.; Xu, J.; Shi, J.; Shi, C.; Chen, L. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network. IEEE Trans. Geosci. Remote 2020, 58, 5304–5316. [Google Scholar] [CrossRef]
- Dong, J.; Liu, X.; Huang, G.; Fan, J.; Wu, L.; Wu, J. Comparison of four bio-inspired algorithms to optimize KNEA for predicting monthly reference evapotranspiration in different climate zones of China. Comput. Electron. Agric. 2021, 186, 106211. [Google Scholar] [CrossRef]
- Dong, J.; Wu, L.; Liu, X.; Fan, C.; Leng, M.; Yang, Q. Simulation of Daily Diffuse Solar Radiation Based on Three Machine Learning Models. Comput. Model. Eng. Sci. 2020, 123, 49–73. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M.; Allen, R.G.; Pereira, L.S.; Martin, S. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 56. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Cui, Y.; Jia, L.; Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 2021, 307, 108488. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme gradient boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Yang, X. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Mubiru, J.; Banda, E.J.K.B. Performance of empirical correlations for predicting monthly mean daily diffuse solar radiation values at Kampala, Uganda. Appl. Clim. 2007, 88, 127–131. [Google Scholar] [CrossRef]
- Katiyar, A.K.; Pandey, C.K.; Katiyar, V.K. Correlation model of hourly diffuse solar radiation based on ASHRAE model: A study case in India. Int. J. Renew. Energy Technol. 2012, 3, 341–355. [Google Scholar] [CrossRef]
- Charuchittipan, D.; Choosri, P.; Janjai, S.; Buntoung, S.; Nunez, M.; Thongrasmee, W. A semi-empirical model for estimating diffuse solar near infrared radiation in Thailand using ground- and satellite-based data for mapping applications. Renew. Energ. 2018, 117, 175–183. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, D.; Zhao, X. Improved empirical models for estimating surface direct and diffuse solar radiation at monthly and daily level: A case study in North China. Prog. Phys. Geog. 2019, 43, 80–94. [Google Scholar] [CrossRef]
- Bakirci, K. Prediction of diffuse radiation in solar energy applications: Turkey case study and compare with satellite data. Energy 2021, 237, 121527. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Y.; Wang, H.; Bai, Y.; Bai, Y. Surface Diffuse Solar Radiation Determined by Reanalysis and Satellite over East Asia: Evaluation and Comparison. Remote Sens. 2020, 12, 1387. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, D.; Liu, Y.; Liu, J. Diffuse solar radiation models for different climate zones in China: Model evaluation and general model development. Energ. Convers. Manag. 2019, 185, 518–536. [Google Scholar] [CrossRef]
- Yang, L.; Cao, Q.; Yu, Y.; Liu, Y. Comparison of daily diffuse radiation models in regions of China without solar radiation measurement. Energy 2020, 191, 116571. [Google Scholar] [CrossRef]
- Wu, L.; Peng, Y.; Fan, J.; Wang, Y. Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrol. Res. 2019, 50, 1730–1750. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.M.; Bostock, M.G. Identifying low-frequency earthquakes in central Cascadia using cross-station correlation. Tectonophysics 2015, 658, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Farzanpour, H.; Shiri, J.; Sadraddini, A.A.; Trajkovic, S. Global comparison of 20 reference evapotranspiration equations in a semi-arid region of Iran. Nord. Hydrol. 2019, 50, 282–300. [Google Scholar] [CrossRef]
- Lu, X.; Ju, Y.; Wu, L.; Fan, J.; Zhang, F.; Li, Z. Daily pan evaporation modeling from local and cross-station data using three tree-basedmachine learning models. J. Hydrol. 2018, 566, 668–684. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration. J. Hydrol. 2013, 480, 46–57. [Google Scholar] [CrossRef]
Station | Latitude (°N) | Longitude (°E) | Elevation (m) | Tmax_s | Tmin_s | RH_s | Rs_s | P_s | Rd_s | Tmax | Tmin | RH | Rs | P | Ra | Rd |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mohe | 52.58 | 122.31 | 297.30 | −3.09 | −12.48 | 82.18 | 9.87 | 19.81 | 5.00 | 1.37 | −14.43 | 68.83 | 9.45 | 14.91 | 19.65 | 5.17 |
Harbin | 45.51 | 126.39 | 143.00 | 5.69 | −4.82 | 73.11 | 12.00 | 29.11 | 5.67 | 6.69 | −3.27 | 68.00 | 10.45 | 17.49 | 23.08 | 5.61 |
Urumqi | 43.47 | 87.39 | 918.70 | 5.41 | −5.14 | 58.63 | 13.29 | 17.43 | 5.91 | 7.21 | −1.16 | 64.16 | 9.90 | 10.80 | 22.19 | 4.66 |
Ejinaqi | 41.57 | 101.04 | 941.30 | 9.00 | −2.86 | 36.73 | 12.81 | 18.08 | 5.95 | 9.95 | −2.82 | 34.32 | 12.65 | 1.28 | 21.49 | 5.53 |
Golmud | 36.25 | 94.55 | 2809.20 | −1.23 | −13.36 | 45.25 | 13.21 | 7.80 | 5.58 | 8.44 | −4.15 | 33.66 | 13.29 | 1.47 | 24.12 | 5.83 |
Shengyang | 41.44 | 123.31 | 45.20 | 10.05 | −0.53 | 68.41 | 12.39 | 33.21 | 6.09 | 10.28 | −0.86 | 66.84 | 10.81 | 17.61 | 24.15 | 5.75 |
Beijing | 39.48 | 116.28 | 54.70 | 15.73 | 4.42 | 58.37 | 12.86 | 39.56 | 6.82 | 15.35 | 6.18 | 54.73 | 10.69 | 17.77 | 25.45 | 6.07 |
Lhasa | 29.4 | 91.08 | 3650.10 | 5.27 | −7.86 | 45.09 | 18.27 | 9.73 | 6.02 | 13.39 | −0.50 | 32.01 | 16.00 | 9.02 | 27.09 | 5.74 |
Kunming | 25 | 102.39 | 1896.80 | 21.85 | 10.25 | 73.90 | 14.19 | 53.27 | 8.01 | 21.05 | 11.10 | 72.95 | 13.52 | 29.70 | 31.66 | 6.96 |
Zhengzhou | 34.43 | 113.39 | 111.30 | 18.79 | 7.98 | 63.07 | 12.67 | 51.63 | 7.80 | 18.35 | 9.47 | 58.61 | 10.42 | 18.81 | 27.98 | 7.43 |
Wuhan | 30.36 | 114.03 | 27.00 | 19.90 | 11.42 | 76.76 | 11.77 | 70.39 | 7.68 | 19.58 | 10.96 | 80.72 | 9.45 | 40.78 | 29.68 | 6.74 |
Baoshan | 31.24 | 121.27 | 8.20 | 18.53 | 12.45 | 80.79 | 11.97 | 67.98 | 7.23 | 19.07 | 12.81 | 72.85 | 10.09 | 41.65 | 29.42 | 6.80 |
Guangzhou | 23.13 | 113.29 | 4.20 | 26.66 | 17.96 | 80.57 | 14.63 | 103.59 | 8.61 | 25.51 | 17.89 | 79.48 | 11.29 | 63.80 | 32.53 | 7.80 |
Sanya | 18.13 | 109.35 | 7.00 | 26.89 | 24.46 | 83.97 | 14.60 | 111.86 | 9.05 | 24.88 | 20.27 | 89.97 | 13.78 | 54.25 | 32.99 | 8.94 |
No. | Models | Input Combinations | |||
---|---|---|---|---|---|
XGBoost_DE | XGBoost_FPA | XGBoost_GOA | XGBoost_GWO | ||
S1 | XGBoost_DE1 | XGBoost_FPA1 | XGBoost_GOA1 | XGBoost_GWO1 | Tmax_s, Tmin_s, Rs_s, Ra |
S2 | XGBoost_DE2 | XGBoost_FPA2 | XGBoost_GOA2 | XGBoost_GWO2 | Tmax_s, Tmin_s, Rs_s, Ra, RH_s |
S3 | XGBoost_DE3 | XGBoost_FPA3 | XGBoost_GOA3 | XGBoost_GWO3 | Tmax_s, Tmin_s, Rs_s, Ra, P_s |
S4 | XGBoost_DE4 | XGBoost_FPA4 | XGBoost_GOA4 | XGBoost_GWO4 | Tmax_s, Tmin_s, Rs_s, Ra, RH_s, P_s |
S5 | XGBoost_DE5 | XGBoost_FPA5 | XGBoost_GOA5 | XGBoost_GWO5 | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra |
S6 | XGBoost_DE6 | XGBoost_FPA6 | XGBoost_GOA6 | XGBoost_GWO6 | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, RH_s |
S7 | XGBoost_DE7 | XGBoost_FPA7 | XGBoost_GOA7 | XGBoost_GWO7 | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, P_s |
S8 | XGBoost_DE8 | XGBoost_FPA8 | XGBoost_GOA8 | XGBoost_GWO8 | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, RH_s, P_s |
No. | Models | Input Combinations | |||
---|---|---|---|---|---|
XGBoost_DE | XGBoost_FPA | XGBoost_GOA | XGBoost_GWO | ||
L1 | XGBoost_DE9 | XGBoost_FPA9 | XGBoost_GOA9 | XGBoost_GWO9 | Tmax, Tmin, Rs, Ra |
L2 | XGBoost_DE10 | XGBoost_FPA10 | XGBoost_GOA10 | XGBoost_GWO10 | Tmax, Tmin, Rs, Ra, RH |
L3 | XGBoost_DE11 | XGBoost_FPA11 | XGBoost_GOA11 | XGBoost_GWO11 | Tmax, Tmin, Rs, Ra, P |
L4 | XGBoost_DE12 | XGBoost_FPA12 | XGBoost_GOA12 | XGBoost_GWO12 | Tmax, Tmin, Rs, Ra, RH, P |
No. | Models | Train | Test | Pred | Input Combinations | ||||
---|---|---|---|---|---|---|---|---|---|
1 | XGBoost_ DE | XGBoost_ FPA | XGBoost_ GOA | XGBoost_ GWO | Mohe | Harbin | Harbin | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, P_s | Rd_s, Tmax_s, Tmin_s, Rs_s, Ra, RH_s, P_s |
2 | XGBoost_ DE | XGBoost_ FPA | XGBoost_ GOA | XGBoost_ GWO | Urumqi | Ejinaqi | Ejinaqi | ||
3 | XGBoost_ DE | XGBoost_ FPA | XGBoost_ GOA | XGBoost_ GWO | Shengyang | Beijing | Beijing | ||
4 | XGBoost_ DE | XGBoost_ FPA | XGBoost_ GOA | XGBoost_ GWO | Zhengzhou | Wuhan | Wuhan |
Stations/Statistical Indicators | RMSE | R2 | MAE | MBE |
---|---|---|---|---|
Mohe | 2.151 | 0.678 | 1.424 | 0.377 |
Harbin | 1.741 | 0.765 | 1.196 | 0.230 |
Urumqi | 3.671 | 0.328 | 2.466 | 0.414 |
Ejinaqi | 2.379 | 0.596 | 1.750 | 0.348 |
Golmud | 2.068 | 0.687 | 1.503 | 0.317 |
Shengyang | 2.135 | 0.677 | 1.479 | 0.284 |
Beijing | 1.953 | 0.796 | 1.317 | 0.201 |
Lhasa | 2.171 | 0.810 | 1.491 | 0.331 |
Kunming | 3.462 | 0.510 | 2.539 | 0.408 |
Zhengzhou | 2.158 | 0.725 | 1.549 | 0.239 |
Wuhan | 2.582 | 0.656 | 1.927 | 0.300 |
Baoshan | 2.029 | 0.691 | 1.506 | 0.248 |
Guangzhou | 2.907 | 0.387 | 2.196 | 0.307 |
Sanya | 3.561 | 0.327 | 2.850 | 0.509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Xiang, Y.; Wu, L.; Liu, X.; Dong, J.; Zhang, F.; Li, Z.; Cui, Y. Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data. Remote Sens. 2023, 15, 1885. https://doi.org/10.3390/rs15071885
Zhao S, Xiang Y, Wu L, Liu X, Dong J, Zhang F, Li Z, Cui Y. Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data. Remote Sensing. 2023; 15(7):1885. https://doi.org/10.3390/rs15071885
Chicago/Turabian StyleZhao, Shuting, Youzhen Xiang, Lifeng Wu, Xiaoqiang Liu, Jianhua Dong, Fucang Zhang, Zhijun Li, and Yaokui Cui. 2023. "Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data" Remote Sensing 15, no. 7: 1885. https://doi.org/10.3390/rs15071885
APA StyleZhao, S., Xiang, Y., Wu, L., Liu, X., Dong, J., Zhang, F., Li, Z., & Cui, Y. (2023). Simulation of Diffuse Solar Radiation with Tree-Based Evolutionary Hybrid Models and Satellite Data. Remote Sensing, 15(7), 1885. https://doi.org/10.3390/rs15071885