An Adaptive Identification Method for Potential Landslide Hazards Based on Multisource Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Multisource Factor Dataset Processing
3.2. Combined Multiple InSAR Techniques for Surface Deformation Monitoring
3.3. Adaptive Identification of Potential Landslide Hazards Based on Multisource Data
3.3.1. Network Structure of the CNN Used
3.3.2. Main Process of Adaptive Identification
4. Results and Discussion
4.1. Multisource Factor Dataset Processing Results
4.2. InSAR Surface Deformation Monitoring Results
4.3. Adaptive Identification Results of Potential Landslide Hazards
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alimohammadlou, Y.; Tanyu, B.F.; Abbaspour, A.; Delamater, P.L. Automated landslide detection model to delineate the extent of existing landslides. Nat. Hazards 2021, 107, 1639–1656. [Google Scholar] [CrossRef]
- Quesada-Román, A. Landslide risk index map at the municipal scale for Costa Rica. Int. J. Disast. Risk Reduct. 2021, 56, 102144. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Li, Y.N.; Wang, T.; Wang, H.Y.; Chen, T.Q.; Sun, Z.H.; Luo, D.; Li, C.; Han, L. Evaluation of different machine learning models and novel deep learning-based algorithm for landslide susceptibility mapping. Geosci. Lett. 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Deng, L.Z.; Yuan, H.Y.; Zhang, M.Z.; Chen, J.G. Research progress on landslide deformation monitoring and early warning technology. J. Tsinghua Univ. 2022, 63, 1–16. [Google Scholar] [CrossRef]
- Cui, P. Progress and prospects in research on mountain hazards in China. Prog. Geogr. 2014, 33, 145–152. [Google Scholar] [CrossRef]
- Zheng, X.X.; He, G.J.; Wang, S.S.; Wang, Y.; Wang, G.Z.; Yang, Z.Y.; Yu, J.C.; Wang, N. Comparison of machine learning methods for potential active landslide hazards identification with multi-source data. ISPRS Int. J. Geo-Inf. 2021, 10, 253. [Google Scholar] [CrossRef]
- Lissak, C.; Bartsch, A.; Michele, D.M.; Gomez, C.; Maquaire, O.; Raucoules, D.; Roulland, T. Remote sensing for assessing landslides and associated hazards. Surv. Geophys. 2020, 41, 1391–1435. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, C.; Dong, X.J. Application status and prospect of aerial remote sensing technology for geohazards. Acta Geod. Et Cartogr. Sin. 2022, 51, 2020–2033. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, H.Y.; Li, W.L.; Dong, X.J.; Guo, C. Types of potential landslide and corresponding identification technologies. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 377–387. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, C.Y.; Chen, X.R. Technical progress and development trend of geological hazards early identification with multi-source remote sensing. Acta Geod. Et Cartogr. Sin. 2022, 51, 885–896. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, Y.; Gao, P.; Chen, W.L.; Li, H.; Hou, Y.; Nuremanguli, T.; Ma, H.J. Landslide mapping with remote sensing: Challenges and opportunities. Int. J. Remote Sens. 2020, 41, 1555–1581. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhang, L.M.; Yin, K.; Luo, H.Y.; Li, J.H. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Kumar, N.; Verma, A.K.; Sardana, S.; Sarkar, K.; Singh, T.N. Comparative analysis of limit equilibrium and numerical methods for prediction of a landslide. Bull. Eng. Geol. Environ. 2018, 77, 595–608. [Google Scholar] [CrossRef]
- Sardana, S.; Verma, A.K.; Verma, R.; Singh, T.N. Rock slope stability along road cut of Kulikawn to Saikhamakawn of Aizawl, Mizoram, India. Nat. Hazards 2019, 99, 753–767. [Google Scholar] [CrossRef]
- Metternicht, G.; Hurni, L.; Gogu, R. Remote sensing of landslides: An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens. Environ. 2005, 98, 284–303. [Google Scholar] [CrossRef]
- Chambers, J.E.; Wilkinson, P.B.; Kuras, O.; Ford, J.R.; Gunn, D.A.; Meldrum, P.I.; Pennington, C.V.L.; Weller, A.L.; Hobbs, P.R.N.; Ogilvy, R.D. Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 2011, 125, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Lo, C.M.; Feng, Z.Y.; Chang, K.T. Landslide hazard zoning based on numerical simulation and hazard assessment. Geomat. Nat. Hazards Risk 2018, 9, 368–388. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Su, L.J. Influence of critical acceleration model on assessments of potential earthquake–induced landslide hazards in Shimian County, Sichuan Province, China. Landslides 2021, 18, 1659–1674. [Google Scholar] [CrossRef]
- Sardana, S.; Sinha, R.K.; Verma, A.K.; Jaswal, M.; Singh, T.N. A semi-empirical approach for rockfall prediction along the Lengpui-Aizawl highway Mizoram, India. Geotech. Geol. Eng. 2022, 40, 5507–5525. [Google Scholar] [CrossRef]
- Verma, A.K.; Sardana, S.; Sharma, P.; Dinpuia, L.; Singh, T.N. Investigation of rockfall-prone road cut slope near Lengpui Airport, Mizoram, India. JRMGE 2019, 11, 146–158. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Wang, C.Y.; Meng, Y.; Chen, J.B.; Yue, A.Z. Landslide monitoring using change detection in multitemporal optical imagery. IEEE Geosci. Remote Sens. 2019, 17, 312–316. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS-J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int. J. Remote Sens. 2012, 33, 466–489. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. T-GRS 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Wang, Z.D.; Wen, X.H.; Tang, W.; Liu, H.; Wang, D.F. Early detection of geological hazards in Longmenshan-Dadu river area using various InSAR techniques. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 451–459. [Google Scholar] [CrossRef]
- Abdulwahid, W.M.; Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides 2017, 14, 1057–1076. [Google Scholar] [CrossRef]
- Zhou, S.; Ouyang, C.J.; Huang, Y. An InSAR and depth-integrated coupled model for potential landslide hazard assessment. Acta Geotech. 2022, 17, 3613–3632. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.M.; Dijkstra, T.A.; Jordan, C.J.; Chen, G.; Zeng, R.Q.; Novellinod, A. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sens. Environ. 2020, 241, 111738. [Google Scholar] [CrossRef]
- Zhang, L.L.; Dai, K.; Deng, J.; Ge, D.Q.; Liang, R.B.; Li, W.L.; Xu, Q. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z. Remote sensing of landslides—A review. Remote Sens. 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.H.; Niu, R.Q.; Qi, M.R.; Ding, Z.; Xu, H.; He, R. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators. Bull. Geol. Sci. Technol. 2022, 41, 187–196. [Google Scholar] [CrossRef]
- Huang, H.F.; Xue, R.H.; Zhao, B.B.; Yi, W.; Deng, Y.H.; Dong, Z.H.; Liu, Q.; Yi, Q.L.; Zhang, G.D. The bedding rock landslide identification in the head area of the Three Gorges Reservoir combined with disaster pregnant mechanism and comprehensive remote sensing method. Acta Geod. Et Cartogr. Sin. 2022, 51, 2056–2068. [Google Scholar] [CrossRef]
- Yi, Y.N.; Zhang, Z.J.; Zhang, W.C.; Jia, H.H.; Zhang, J.Q. Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena 2020, 195, 104851. [Google Scholar] [CrossRef]
- Yang, X.; Liu, R.; Yang, M.; Chen, J.J.; Liu, T.Q.; Yang, Y.T.; Chen, W.; Wang, Y.T. Incorporating landslide spatial information and correlated features among conditioning factors for landslide susceptibility mapping. Remote Sens. 2021, 13, 2166. [Google Scholar] [CrossRef]
- Long, X.Y.; Li, H.; Bai, X.S.; Zhai, X.; Wang, X.M.; Pan, Y. Automatic identification of man-made potential landslides by deep learning. Yangtze River 2023, 54, 1–10. Available online: http://kns.cnki.net/kcms/detail/42.1202.TV.20230130.1435.013.html (accessed on 20 January 2023).
- Huang, W.B.; Ding, M.T.; Wang, D.; Jiang, L.W.; Li, Z.H. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along sichuan-tibet traffic corridor. Earth Sci. 2022, 47, 2015–2030. [Google Scholar] [CrossRef]
- Soares, L.P.; Dias, H.C.; Garcia, G.P.B.; Grohmann, C.H. Landslide segmentation with deep learning: Evaluating model generalization in rainfall-induced landslides in Brazil. Remote Sens. 2022, 14, 2237. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Baidu Encyclopedia. Yongping County. 2022. Available online: https://baike.baidu.com/item/%E6%B0%B8%E5%B9%B3%E5%8E%BF/3556662?fr=aladdin (accessed on 20 December 2022).
- Yongping County People’s Government Office. Yongping Overview. 2022. Available online: http://www.ypx.gov.cn/ypxrmzf/c102483/zjyp.shtml (accessed on 20 December 2022).
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Amer. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- National Geomatics Center of China. 1:250,000 National Basic Geographic Database. 2022. Available online: https://www.webmap.cn/commres.do?method=result25W (accessed on 20 December 2022).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Sajadi, P.; Sang, Y.F.; Gholamnia, M.; Bonafoni, S.; Brocca, L.; Pradhan, B.; Singh, A. Performance evaluation of long NDVI timeseries from AVHRR, MODIS and landsat sensors over landslide-prone locations in Qinghai-Tibetan Plateau. Remote Sens. 2021, 13, 3172. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, W.P.; Xie, F.; Fan, H.; Chen, F. Habitat suitability evaluation of Asian elephants in the Yuanjiang-Lixianjiang River Basin based on meta-analysis and remote sensing big data. Acta Ecol. Sin. 2022, 42, 5067–5078. [Google Scholar] [CrossRef]
- Artoni, F.; Delorme, A.; Makeig, S. Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition. NeuroImage 2018, 175, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Ma, T.H.; Wang, K.; Tan, M.; Liang, J.F. Construction of ecological security pattern in northern Peixian based on MCR and SPCA. J. Ecol. Rural Environ. 2020, 36, 1036–1045. [Google Scholar] [CrossRef]
- Zou, T.; Yoshino, K. Environmental vulnerability evaluation using a spatial principal components approach in the Daxing’anling region, China. Ecol. Indic. 2017, 78, 405–415. [Google Scholar] [CrossRef]
- Zheng, Z.Z.; Xie, C.H.; He, Y.; Zhu, M.C.; Huang, W.F.; Shao, T.M. Monitoring potential geological hazards with different InSAR algorithms: The case of western Sichuan. Remote Sens. 2022, 14, 2049. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.Z.; Zhang, Q.Y.; Zhou, X.M.; Dai, B.C. Automatic recognition of landslide based on CNN and texture change detection. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 444–448. [Google Scholar]
- Aslam, B.; Zafar, A.; Khalil, U. Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential. Soft Comput. 2021, 25, 13493–13512. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Duan, H.; Niu, R.; Peng, L. Comparison of general kernel, multiple kernel, infinite ensemble and semi-supervised support vector machines for landslide susceptibility prediction. Stoch. Environ. Res. Risk A 2022, 36, 3535–3556. [Google Scholar] [CrossRef]
- Dong, L. Research and application of patch match stereo matching algorithm based on adaptive window. Wuhan Polytech. Univ. 2022. [Google Scholar] [CrossRef]
- Ma, D.L.; Mao, L.B.; Wu, D.H.; Shi, Z. An adaptive dense matching method considering texture features. Sci. Surv. Mapp. 2022, 47, 70–78, 101. [Google Scholar] [CrossRef]
- Yang, C.S.; Dong, J.H.; Zhu, S.N.; Xiong, G.H. Detection, identification and deformation characteristics of landslide groups by InSAR in Batang section of Jinsha river convergence zone, China. J. Earth Sci. Environ. 2021, 43, 398–408. [Google Scholar] [CrossRef]
- Niu, C.; Yin, W.; Xue, W.; Sui, Y.; Xun, X.; Zhou, X.; Zhang, S.; Xue, Y. Multi-window identification of landslide hazards based on InSAR technology and factors predisposing to disasters. Land 2023, 12, 173. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, X.J.; Li, W.L. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 957–966. [Google Scholar] [CrossRef]
PC Layer | Eigenvalue | Percentage of Eigenvalues (%) | Cumulative Eigenvalues (%) |
---|---|---|---|
1 | 368,380.80 | 55.76 | 55.76 |
2 | 104,995.50 | 15.89 | 71.65 |
3 | 76,241.82 | 11.54 | 83.19 |
4 | 62,651.62 | 9.48 | 92.68 |
5 | 41,850.21 | 6.33 | 99.01 |
6 | 5989.58 | 0.91 | 99.92 |
7 | 361.57 | 0.05 | 99.97 |
8 | 139.41 | 0.02 | 100 |
9 | 18.29 | 0 | 100 |
10 | 4.92 | 0 | 100 |
11 | 3.36 | 0 | 100 |
12 | 1.59 | 0 | 100 |
13 | 0.46 | 0 | 100 |
14 | 0.01 | 0 | 100 |
15 | 0 | 0 | 100 |
Deformation Rate Range (mm/a) | Area (km2) | Percentage (%) | Characteristic Reflection |
---|---|---|---|
<−20 | 31.56 | 1.14 | subsidence |
−20–−10 | 264.5 | 9.48 | subsidence |
−10–0 | 922.05 | 33.05 | subsidence |
0–10 | 1293.54 | 46.37 | uplift |
10–20 | 226.95 | 8.14 | uplift |
>20 | 50.83 | 1.82 | uplift |
Deformation Rate Range (mm/a) | Area (km2) | Percentage (%) | Characteristic Reflection |
---|---|---|---|
<−20 | 42.33 | 1.52 | subsidence |
−20–−10 | 116.64 | 4.18 | subsidence |
−10–0 | 831.15 | 29.8 | subsidence |
0–10 | 1445.52 | 51.82 | uplift |
10–20 | 344.56 | 12.35 | uplift |
>20 | 9.23 | 0.33 | uplift |
Sample No. | Sample No. | ||
---|---|---|---|
26 | 0.0233 | 19 | 0.0109 |
30 | 0.0177 | 28 | 0.0106 |
2 | 0.0171 | 3 | 0.0097 |
12 | 0.0153 | 16 | 0.0095 |
23 | 0.0136 | 7 | 0.0091 |
14 | 0.0135 | 15 | 0.0089 |
20 | 0.0131 | 29 | 0.0083 |
18 | 0.0127 | 6 | 0.0076 |
25 | 0.0126 | 5 | 0.0073 |
11 | 0.0122 | 27 | 0.0070 |
10 | 0.0121 | 1 | 0.0068 |
4 | 0.0120 | 17 | 0.0065 |
21 | 0.0119 | 8 | 0.0065 |
13 | 0.0111 | 9 | 0.0061 |
22 | 0.0110 | 24 | 0.0048 |
Window Size | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|
48 × 48 | 79.42 | 77.80 | 78.60 |
32 × 32 | 83.63 | 82.92 | 83.27 |
16 × 16 | 87.56 | 85.06 | 86.29 |
8 × 8 | 90.57 | 86.35 | 88.41 |
Comprehensive results | 85.30 | 83.03 | 84.15 |
Model | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|
Comprehensive results of adaptive identification in this study | 85.30 | 83.03 | 84.15 |
CNN with preferred fixed window size | 77.65 | 75.78 | 76.70 |
SVM | 74.85 | 75.06 | 74.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Niu, C.; Bai, Y.; Zhang, L.; Ma, D.; Zhang, S.; Zhou, X.; Xue, Y. An Adaptive Identification Method for Potential Landslide Hazards Based on Multisource Data. Remote Sens. 2023, 15, 1865. https://doi.org/10.3390/rs15071865
Yin W, Niu C, Bai Y, Zhang L, Ma D, Zhang S, Zhou X, Xue Y. An Adaptive Identification Method for Potential Landslide Hazards Based on Multisource Data. Remote Sensing. 2023; 15(7):1865. https://doi.org/10.3390/rs15071865
Chicago/Turabian StyleYin, Wenping, Chong Niu, Yongqing Bai, Linlin Zhang, Deqiang Ma, Sheng Zhang, Xiran Zhou, and Yong Xue. 2023. "An Adaptive Identification Method for Potential Landslide Hazards Based on Multisource Data" Remote Sensing 15, no. 7: 1865. https://doi.org/10.3390/rs15071865
APA StyleYin, W., Niu, C., Bai, Y., Zhang, L., Ma, D., Zhang, S., Zhou, X., & Xue, Y. (2023). An Adaptive Identification Method for Potential Landslide Hazards Based on Multisource Data. Remote Sensing, 15(7), 1865. https://doi.org/10.3390/rs15071865