Lunar Procellarum KREEP Terrane (PKT) Stratigraphy and Structure with Depth: Evidence for Significantly Decreased Th Concentrations and Thermal Evolution Consequences
Abstract
:1. Introduction
2. Data and Methods
2.1. Thorium Abundances
2.2. Crater Excavation and Sampling Depths
2.3. Recent Reassessment of Global Crustal Thickness and Implications for PKT Radioactive Element Abundance
3. Results
3.1. Thorium Distribution in the Procellarum KREEP Terrane (PKT)
3.2. Thorium Distribution in the South Pole–Aitken Terrane (SPAT)
3.3. Thorium Distribution in the Farside Highlands Terrane (FHT)
3.4. Summary
4. Discussion
4.1. Crustal Stratigraphy Implied by Thorium Anomalies in the SPAT and PKT
4.2. Origin of the Procellarum KREEP Terrane
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, S.R. Growth of planetary crusts. Tectonophysics 1989, 161, 147–156. [Google Scholar] [CrossRef]
- Hess, P.C.; Parmentier, E.M. A model for the thermal and chemical evolution of the Moon's interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 1995, 134, 501–514. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Phillips, R.J. The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 2000, 105, 20417–20430. [Google Scholar] [CrossRef]
- Laneuville, M.; Wieczorek, M.A.; Breuer, D.; Tosi, N. Asymmetric thermal evolution of the Moon. J. Geophys. Res. Planets 2013, 118, 1435–1452. [Google Scholar] [CrossRef]
- Elardo, S.M.; Laneuville, M.; McCubbin, F.M.; Shearer, C.K. Early crust building enhanced on the Moon’s nearside by mantle melting-point depression. Nat. Geosci. 2020, 13, 339–343. [Google Scholar] [CrossRef]
- Hargitai, H.; Kereszturi, Á. Encyclopedia of Planetary Landforms; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–6. ISBN 978-1-4614-3133-6. [Google Scholar]
- Warren, P.H.; Wasson, J.T. The origin of KREEP. Rev. Geophys. 1979, 17, 73–88. [Google Scholar] [CrossRef]
- Shearer, C.K.; Hess, P.C.; Wieczorek, M.A.; Pritchard, M.E.; Parmentier, E.M.; Borg, L.E.; Longhi, J.; Elkins-Tanton, L.T.; Neal, C.R.; Antonenko, I.; et al. Thermal and magmatic evolution of the Moon. In New Views of the Moon, Reviews in Mineralogy & Geochemistry; Jolliff, B., Wiezcorek, M., Shearer, C.K., Neal, C.R., Eds.; De Gruyter: Berlin, Germany, 2006; Volume 60, pp. 365–518. [Google Scholar]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2000, 105, 4197–4216. [Google Scholar] [CrossRef]
- Haskin, L.A.; Gillis, J.J.; Korotev, R.L.; Jolliff, B.L. The materials of the lunar Procellarum KREEP Terrane: A synthesis of data from geomorphological mapping, remote sensing, and sample analyses. J. Geophys. Res. Planets 2000, 105, 20413–20415. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.C.; Maurice, S.; Thomsen, D.R. Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science 1998, 281, 1484–1489. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Feldman, W.C.; Barraclough, B.L.; Binder, A.B.; Elphic, R.C.; Maurice, S.; Miller, M.C.; Prettyman, T.H. Thorium abundances on the lunar surface. J. Geophys. Res. Planets 2000, 105, 20307–20331. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Puetter, R.C.; Elphic, R.C.; Feldman, W.C.; Hagerty, J.J.; Prettyman, T.H.; Spudis, P.D. Global spatial deconvolution of Lunar Prospector Th abundances. Geophys. Res. Lett. 2007, 34, L03201. [Google Scholar] [CrossRef]
- Feldman, W.C.; Gasnault, O.; Maurice, S.; Lawrence, D.J.; Elphic, R.C.; Lucey, P.G.; Binder, A.B. Global distribution of lunar composition: New results from Lunar Prospector. J. Geophys. Res. Planets 2002, 107, 5-1–5-14. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Wu, K. Thorium distribution on the lunar surface observed by Chang’E-2 gamma-ray spectrometer. Astrophys. Space Sci. 2016, 361, 234. [Google Scholar] [CrossRef]
- Chen, J.; Ling, Z.; Li, B.; Zhang, J.; Sun, L.; Liu, J. Abundance and distribution of radioelements in lunar terranes: Results of Chang’E-1 gamma ray spectrometer data. Adv. Space Res. 2016, 57, 919–927. [Google Scholar] [CrossRef]
- Lucey, P.G.; Blewett, D.T.; Hawke, B.R. Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J. Geophys. Res. Planets 1998, 103, 3679–3699. [Google Scholar] [CrossRef]
- Garrick-Bethell, I.; Zuber, M.T. Elliptical structure of the lunar South Pole-Aitken basin. Icarus 2009, 204, 399–408. [Google Scholar] [CrossRef]
- Potter, R.; Collins, G.; Kiefer, W.; McGovern, P.; Kring, D. Constraining the size of the South Pole-Aitken basin impact. Icarus 2012, 220, 730–743. [Google Scholar] [CrossRef]
- Warren, P.H.; Kallemeyn, G.W. Pristine rocks, remote sensing, and the lunar magmasphere hypothesis. In New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets; Jolliff, B.L., Graham, R., Eds.; Lunar and Planetary Institute: Houston, TX, USA, 1998; p. 75. [Google Scholar]
- Zhu, M.-H.; Chang, J.; Ma, T. Thorium distribution on the Moon: New insights from Chang’E-2 gamma-ray spectrometer. Res. Astron. Astrophys. 2019, 19, 76. [Google Scholar] [CrossRef]
- Zhu, M.H.; Wünnemann, K.; Potter, R.W.K.; Kleine, T.; Morbidelli, A. Are the Moon’s nearside-farside asymmetries the result of a giant impact? J. Geophys. Res. Planets 2019, 124, 2117–2140. [Google Scholar] [CrossRef]
- Wieczorek, M.A. Strength, Depth, and Geometry of Magnetic Sources in the Crust of the Moon from Localized Power Spectrum Analysis. J. Geophys. Res. Planets 2018, 123, 291–316. [Google Scholar] [CrossRef]
- Laneuville, M.; Taylor, J.; Wieczorek, M.A. Distribution of Radioactive Heat Sources and Thermal History of the Moon. J. Geophys. Res. Planets 2018, 123, 3144–3166. [Google Scholar] [CrossRef]
- Boukaré, C.-E.; Parmentier, E.; Parman, S. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 2018, 491, 216–225. [Google Scholar] [CrossRef]
- Loper, D.E.; Werner, C.L. On lunar asymmetries 1. tilted convection and crustal asymmetry. J. Geophys. Res. Planets 2002, 107, 13-1–13-7. [Google Scholar] [CrossRef]
- Parmentier, E.M.; Zhong, S.; Zuber, M.T. Gravitational differentiation due to initial chemical stratification: Origin of lunar asymmetry by the creep of dense kreep? Earth Planet. Sci. Lett. 2002, 201, 473–480. [Google Scholar] [CrossRef]
- Arkani-Hamed, J.; Pentecost, A. On the source region of the lunar mare basalt. J. Geophys. Res. Planets 2001, 106, 14691–14700. [Google Scholar]
- Jones, M.J.; Evans, A.J. Thermal and chemical consequences of large impacts on the lunar interior. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 2180. [Google Scholar]
- Jones, M.J.; Evans, A.J.; Johnson, B.C.; Weller, M.B.; Keane, J.T.; Tikoo, S.M. An impact origin of the lunar Procellarum KREEP Terrane. In Proceedings of the 51st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2020; p. 1318. [Google Scholar]
- Zhang, N.; Ding, M.; Zhu, M.-H.; Li, H.; Li, H.; Yue, Z. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact. Nat. Geosci. 2022, 15, 37–41. [Google Scholar] [CrossRef]
- Schultz, P.H.; Crawford, D.A. Origin of nearside structural and geochemical anomalies on the Moon. Geol. Soc. Am. Spec. Pap. 2011, 477, 141–159. [Google Scholar] [CrossRef]
- Hess, P.C.; Parmentier, E.M. Thermal evolution of a thicker KREEP liquid layer. J. Geophys. Res. Planets 2001, 106, 28023–28032. [Google Scholar] [CrossRef]
- Grimm, R.E. Geophysical constraints on the lunar Procellarum KREEP Terrane. J. Geophys. Res. Planets 2013, 118, 768–778. [Google Scholar] [CrossRef]
- Nakamura, R.; Yamamoto, S.; Matsunaga, T.; Ishihara, Y.; Morota, T.; Hiroi, T.; Takeda, H.; Ogawa, Y.; Yokota, Y.; Hirata, N.; et al. Compositional evidence for an impact origin of the Moon’s Procellarum basin. Nat. Geosci. 2012, 5, 775–778. [Google Scholar] [CrossRef]
- Evans, A.J. The lunar geochemical asymmetry: Implications for KREEP and magma ocean crystallization. In Proceedings of the 50th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 2733. [Google Scholar]
- Wilhelms, D.E.; McCauley, J.F.; Trask, N.J. The Geologic History of the Moon; US Geological Survey Prof. Paper; U.S. Geological Survey: Denver, CO, USA, 1987. [CrossRef]
- Head, J.W.; Pieters, C.; McCord, T.; Adams, J.; Zisk, S. Definition and detailed characterization of Lunar surface units using remote observations. Icarus 1978, 33, 145–172. [Google Scholar] [CrossRef]
- Thomson, B.J.; Grosfils, E.B.; Bussey, D.B.J.; Spudis, P.D. A new technique for estimating the thickness of mare basalts in Imbrium Basin. Geophys. Res. Lett. 2009, 36, L12201page. [Google Scholar] [CrossRef]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A.; Lemoine, F.G.; Mazarico, E.; Torrence, M.H.; McGarry, J.F.; Rowlands, D.D.; Head, J.W., III; Duxbury, T.H.; et al. Initial observations from the Lunar Orbiter Laser ltimeter (LOLA). Geophys. Res. Lett. 2010, 37, L18204. [Google Scholar] [CrossRef]
- Croft, S.K. The scaling of complex craters. J. Geophys. Res. 1985, 90, C828. [Google Scholar] [CrossRef]
- Stöffler, D.; Ryder, G.; Ivanov, B.A.; Artemieva, N.A.; Cintala, M.J.; Grieve, R.A.F. Cratering History and Lunar Chronology. Mineral. Geochem. 2006, 60, 519–596. [Google Scholar] [CrossRef]
- Melosh, H.J. Impact Cratering: A Geologic Process; Oxford University Press: New York, NY, USA; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Potter, R.W.; Kring, D.A.; Collins, G.S. Scaling of basin-sized impacts and the influence of target temperature. Geol. Soc. Am. Spec. Pap. 2015, 518, 99–113. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Watkins, M.M.; Asmar, S.W.; Konopliv, A.S.; Lemoine, F.G.; Melosh, H.J.; Neumann, G.A.; Phillips, R.J.; Solomon, S.C.; et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission. Science 2013, 339, 668–671. [Google Scholar] [CrossRef]
- Wieczorek, M.A.; Neumann, G.A.; Nimmo, F.; Kiefer, W.S.; Taylor, G.J.; Melosh, H.J.; Phillips, R.J.; Solomon, S.C.; Andrews-Hanna, J.C.; Asmar, S.W.; et al. The Crust of the Moon as Seen by GRAIL. Science 2013, 339, 671–675. [Google Scholar] [CrossRef]
- Neumann, G.A.; Zuber, M.T.; Wieczorek, M.A.; Head, J.W.; Baker, D.M.H.; Solomon, S.C.; Smith, D.E.; Lemoine, F.G.; Mazarico, E.; Sabaka, T.J.; et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements. Sci. Adv. 2015, 1, e1500852. [Google Scholar] [CrossRef]
- Deutsch, A.N.; Neumann, G.A.; Head, J.W.; Wilson, L. GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and magmatic structures on the Moon. Icarus 2019, 331, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, D.P.; Pieters, C.M. The Character of South Pole-Aitken Basin: Patterns of Surface and Subsurface Composition. J. Geophys. Res. Planets 2018, 123, 729–747. [Google Scholar] [CrossRef]
- Garrick-Bethell, I.; Zuber, M.T. An indigenous origin for the South Pole Aitken basin thorium anomaly. Geophys. Res. Lett. 2005, 32, L13203. [Google Scholar] [CrossRef]
- Moriarty, D.P.; Watkins, R.N.; Valencia, S.N.; Kendall, J.D.; Evans, A.J.; Dygert, N.; Petro, N.E. Evidence for a Stratified Upper Mantle Preserved Within the South Pole-Aitken Basin. J. Geophys. Res. Planets 2021, 126, e2020JE006589. [Google Scholar] [CrossRef]
- Moriarty, D.P., III; Dygert, N.; Valencia, S.N.; Watkins, R.N.; Petro, N.E. The search for lunar mantle rocks exposed on the surface of the Moon. Nat. Commun. 2021, 12, 4659. [Google Scholar] [CrossRef] [PubMed]
- Jolliff, B.L.; Wiseman, S.A.; Lawrence, S.J.; Tran, T.N.; Robinson, M.S.; Sato, H.; Hawke, B.R.; Scholten, F.; Oberst, J.; Hiesinger, H.; et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich. Nat. Geosci. 2011, 4, 566–571. [Google Scholar] [CrossRef]
- Hiesinger, H.; Head, J.W.; Wolf, U.; Jaumann, R.; Neukum, G. Ages and stratigraphy of lunar mare basalts: A synthesis. In Recent Advances and Current Research Issues in Lunar Stratigraphy; Ambrose, W.A., Williams, D.A., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2011; Volume 477, pp. 1–51. [Google Scholar]
- Whitten, J.L.; Head, J.W. Detecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data. Planet. Space Sci. 2013, 85, 24–37. [Google Scholar] [CrossRef]
- Schultz, P.H.; Gault, D.E. Prolonged global catastrophes from oblique impacts. Glob. Catastr. Earth Hist. 1990, 247, 239–262. [Google Scholar] [CrossRef]
- Pierazzo, E.; Melosh, H.J. Understanding Oblique Impacts from Experiments, Observations, and Modeling. Annu. Rev. Earth Planet. Sci. 2000, 28, 141–167. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.B.; Schultz, P.H.; Heineck, J.T. Asymmetry of ejecta flow during oblique impacts using three-dimensional particle image velocimetry. J. Geophys. Res. Planets 2003, 108, 5904. [Google Scholar] [CrossRef]
- Uemoto, K.; Ohtake, M.; Haruyama, J.; Matsunaga, T.; Yamamoto, S.; Nakamura, R.; Yokota, Y.; Ishihara, Y.; Iwata, T. Evidence of impact melt sheet differentiation of the lunar South Pole-Aitken basin. J. Geophys. Res. Planets 2017, 122, 1672–1686. [Google Scholar] [CrossRef]
- Haskin, L.A. The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. Planets 1998, 103, 1679–1689. [Google Scholar] [CrossRef]
- Schultz, P.H.; Crawford, D.A. Origin and implications of non-radial Imbrium Sculpture on the Moon. Nature 2016, 535, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Head, J.W. Lava flooding of ancient planetary crusts: Geometry, thickness, and volumes of flooded lunar impact basins. Moon Planets 1982, 26, 61–88. [Google Scholar] [CrossRef]
- Miljković, K.; Wieczorek, M.A.; Laneuville, M.; Nemchin, A.; Bland, P.A.; Zuber, M.T. Large impact cratering during lunar magma ocean solidification. Nat. Commun. 2021, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Head, J.W.; Wilson, L. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus 2017, 283, 176–223. [Google Scholar] [CrossRef]
- Che, X.; Nemchin, A.; Liu, D.; Long, T.; Wang, C.; Norman, M.D.; Joy, K.H.; Tartese, R.; Head, J.; Jolliff, B.; et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 2021, 374, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; She, Z.; He, Q.; Xiao, L.; Wang, Z.; Head, J.W.; Sun, L.; Wang, Y.; Wu, B.; Wu, X.; et al. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat. Astron. 2022, 7, 287–297. [Google Scholar] [CrossRef]
- Qian, Y.; Xiao, L.; Wang, Q.; Head, J.W.; Yang, R.; Kang, Y.; van der Bogert, C.H.; Hiesinger, H.; Lai, X.; Wang, G.; et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 2021, 561, 116855. [Google Scholar] [CrossRef]
- Li, Q.-L.; Zhou, Q.; Liu, Y.; Xiao, Z.; Lin, Y.; Li, J.-H.; Ma, H.-X.; Tang, G.-Q.; Guo, S.; Tang, X.; et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 2021, 600, 54–58. [Google Scholar] [CrossRef]
Name | Coordinates | Thorium Value (ppm) | Diameter (km) | Transient Cavity Diameter b (km) | Transient Cavity Depth b (km) | Excavation Depth a (km) |
---|---|---|---|---|---|---|
Diophantus | 27.62°N, 34.3°W | 6.0 | 17.57 | 17.16 | 5.72 | 1.91 |
Delisle | 29.98°N, 34.68°W | 6.0 | 24.83 | 23.02 | 7.67 | 2.56 |
Euler | 23.26°N, 29.18°W | 6.0 | 26.03 | 23.96 | 7.99 | 2.66 |
Lambert | 25.77°N, 20.99°W | 5.8 | 30.12 | 27.13 | 9.04 | 3.01 |
Kepler * | 8.12°N, 38.01°W | 11.6 | 31 | 26.65 | 8.88 | 2.96 |
Timocharis * | 26.71°N, 13.10°W | 8.5 | 34.14 | 30.18 | 10.06 | 3.53 |
Aristarchus * | 27.73°N, 47.49°W | 11.9 | 42 | 34.52 | 11.51 | 3.84 |
Marian * | 41.60°N, 43.50°W | 11.4 | 39.49 | 34.15 | 11.83 | 3.94 |
Aristillus * | 33.88°N, 1.21°E | 12.7 | 54.37 | 44.82 | 14.94 | 4.98 |
Copernicus | 9.62°N, 20.08°W | 7.4 | 96 | 72.71 | 24.24 | 8.08 |
Plato | 51.62°N, 9.38°W | 5.4 | 100.68 | 75.67 | 25.22 | 8.41 |
Birkeland * | 30.17°S, 174.01°E | 4.5 | 81.64 | 63.32 | 21.11 | 7.04 |
Oresme V * | 40.75°S, 165.39°E | 4.9 | 56.1 | 46.03 | 15.34 | 5.11 |
Name | Diameter (km) | Transient Cavity Diameter (km) | Transient Cavity Depth (km) | Excavation Depth (km) | |
---|---|---|---|---|---|
Iridum | 260 | 134.33 c | 44.78 c | 16.12 a | 13.43 b |
Imbrium | 1160 | 604.23 c | 210.41 c | 72.51 a | 67.1 b |
South Pole–Aitken | 2400 | 840 d | 386.85 d | 100.8 a | 100 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Head, J.W.; Liu, J.; Potter, R.W.K. Lunar Procellarum KREEP Terrane (PKT) Stratigraphy and Structure with Depth: Evidence for Significantly Decreased Th Concentrations and Thermal Evolution Consequences. Remote Sens. 2023, 15, 1861. https://doi.org/10.3390/rs15071861
Zhang J, Head JW, Liu J, Potter RWK. Lunar Procellarum KREEP Terrane (PKT) Stratigraphy and Structure with Depth: Evidence for Significantly Decreased Th Concentrations and Thermal Evolution Consequences. Remote Sensing. 2023; 15(7):1861. https://doi.org/10.3390/rs15071861
Chicago/Turabian StyleZhang, Jingyi, James W. Head, Jianzhong Liu, and Ross W. K. Potter. 2023. "Lunar Procellarum KREEP Terrane (PKT) Stratigraphy and Structure with Depth: Evidence for Significantly Decreased Th Concentrations and Thermal Evolution Consequences" Remote Sensing 15, no. 7: 1861. https://doi.org/10.3390/rs15071861
APA StyleZhang, J., Head, J. W., Liu, J., & Potter, R. W. K. (2023). Lunar Procellarum KREEP Terrane (PKT) Stratigraphy and Structure with Depth: Evidence for Significantly Decreased Th Concentrations and Thermal Evolution Consequences. Remote Sensing, 15(7), 1861. https://doi.org/10.3390/rs15071861