Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. River Flow Observations
2.1.2. In Situ Soil Moisture Network
2.1.3. Meteorology Observation Network
2.2. Remotely Sensed Soil Moisture
2.2.1. Observation Accuracy
2.2.2. Quality Control
2.3. Distributed Hydrological Model
2.3.1. River Flow Generation
2.3.2. Soil Profile Parameters
2.3.3. Meteorology Forcing Data
2.4. Soil Moisture Assimilation Method
2.4.1. ESTKF
2.4.2. Model State Vector
2.4.3. Observation Operator
2.4.4. Ensemble Generation
2.4.5. Bias Correction of Observation
2.4.6. Observation Localization
2.5. Experimental Design
3. Results
3.1. Calibration and Open-Loop Performance of Hydrological Model
3.2. Improving Soil Moisture Simulation with ESTKF
3.3. Improving River Flow Simulation with ESTKF
3.4. Improving Flood Events Simulation with ESTKF
3.5. The Features of Grid Runoff with Assimilation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merz, B.; Plate, E.J. An Analysis of the Effects of Spatial Variability of Soil and Soil Moisture on Runoff. Water Resour. Res. 1997, 33, 2909–2922. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Nunes, J.P.; Seixas, J.; Keizer, J.J.; Ferreira, A.J.D. Sensitivity of Runoff and Soil Erosion to Climate Change in Two Mediterranean Watersheds. Part II: Assessing Impacts from Changes in Storm Rainfall, Soil Moisture and Vegetation Cover. Hydrol. Process. 2009, 23, 1212–1220. [Google Scholar] [CrossRef]
- Tramblay, Y.; Bouvier, C.; Martin, C.; Didon-Lescot, J.-F.; Todorovik, D.; Domergue, J.-M. Assessment of Initial Soil Moisture Conditions for Event-Based Rainfall–Runoff Modelling. J. Hydrol. 2010, 387, 176–187. [Google Scholar] [CrossRef]
- Penna, D.; Tromp-van Meerveld, H.J.; Gobbi, A.; Borga, M.; Dalla Fontana, G. The Influence of Soil Moisture on Threshold Runoff Generation Processes in an Alpine Headwater Catchment. Hydrol. Earth Syst. Sci. 2011, 15, 689–702. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Bouvier, C.; Ayral, P.-A.; Marchandise, A. Impact of Rainfall Spatial Distribution on Rainfall-Runoff Modelling Efficiency and Initial Soil Moisture Conditions Estimation. Nat. Hazards Earth Syst. Sci. 2011, 11, 157–170. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.G.; Koutroulis, A.G.; Komma, J.; Tsanis, I.K.; Wagner, W.; Blöschl, G. Initial Soil Moisture Effects on Flash Flood Generation—A Comparison between Basins of Contrasting Hydro-Climatic Conditions. J. Hydrol. 2016, 541, 206–217. [Google Scholar] [CrossRef]
- Zehe, E.; Becker, R.; Bárdossy, A.; Plate, E. Uncertainty of Simulated Catchment Runoff Response in the Presence of Threshold Processes: Role of Initial Soil Moisture and Precipitation. J. Hydrol. 2005, 315, 183–202. [Google Scholar] [CrossRef]
- Castillo, V.; Gomezplaza, A.; Martinezmena, M. The Role of Antecedent Soil Water Content in the Runoff Response of Semiarid Catchments: A Simulation Approach. J. Hydrol. 2003, 284, 114–130. [Google Scholar] [CrossRef]
- Vieux, B.E.; Park, J.-H.; Kang, B. Distributed Hydrologic Prediction: Sensitivity to Accuracy of Initial Soil Moisture Conditions and Radar Rainfall Input. J. Hydrol. Eng. 2009, 14, 671–689. [Google Scholar] [CrossRef]
- Goodrich, D.C.; Schmugge, T.J.; Jackson, T.J.; Unkrich, C.L.; Keefer, T.O.; Parry, R.; Bach, L.B.; Amer, S.A. Runoff Simulation Sensitivity to Remotely Sensed Initial Soil Water Content. Water Resour. Res. 1994, 30, 1393–1405. [Google Scholar] [CrossRef]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational Readiness of Microwave Remote Sensing of Soil Moisture for Hydrologic Applications. Hydrol. Res. 2007, 38, 1–20. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Tolson, B.A. Progress in Integrating Remote Sensing Data and Hydrologic Modeling. Prog. Phys. Geogr. Earth Environ. 2014, 38, 464–498. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef] [Green Version]
- Burgin, M.S.; Colliander, A.; Njoku, E.G.; Chan, S.K.; Cabot, F.; Kerr, Y.H.; Bindlish, R.; Jackson, T.J.; Entekhabi, D.; Yueh, S.H. A Comparative Study of the SMAP Passive Soil Moisture Product With Existing Satellite-Based Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2959–2971. [Google Scholar] [CrossRef]
- Western, A.W.; Grayson, R.B.; Blöschl, G. Scaling of Soil Moisture: A Hydrologic Perspective. Annu. Rev. Earth Planet. Sci. 2002, 30, 149–180. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture: Downscale Satellite-Based Soil Moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef] [Green Version]
- Akbar, R.; Moghaddam, M. A Combined Active–Passive Soil Moisture Estimation Algorithm With Adaptive Regularization in Support of SMAP. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3312–3324. [Google Scholar] [CrossRef]
- Sriwongsitanon, N.; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawang, S.; Thianpopirug, S. Comparing the Normalized Difference Infrared Index (NDII) with Root Zonestorage in a Lumped Conceptual Model. Hydrol. Earth Syst. Sci. 2016, 20, 3361–3377. [Google Scholar] [CrossRef] [Green Version]
- Senanayake, I.P.; Yeo, I.-Y.; Tangdamrongsub, N.; Willgoose, G.R.; Hancock, G.R.; Wells, T.; Fang, B.; Lakshmi, V.; Walker, J.P. An In-Situ Data Based Model to Downscale Radiometric Satellite Soil Moisture Products in the Upper Hunter Region of NSW, Australia. J. Hydrol. 2019, 572, 820–838. [Google Scholar] [CrossRef]
- Merlin, O.; Chehbouni, A.; Boulet, G.; Kerr, Y. Assimilation of Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-Scale Meteorological Data. J. Hydrometeorol. 2006, 7, 1308–1322. [Google Scholar] [CrossRef]
- Wilson, D.J.; Western, A.W.; Grayson, R.B. A Terrain and Data-Based Method for Generating the Spatial Distribution of Soil Moisture. Adv. Water Resour. 2005, 28, 43–54. [Google Scholar] [CrossRef]
- Riley, W.J.; Shen, C. Characterizing Coarse-Resolution Watershed Soil Moisture Heterogeneity Using Fine-Scale Simulations. Hydrol. Earth Syst. Sci. 2014, 18, 2463–2483. [Google Scholar] [CrossRef] [Green Version]
- Komma, J.; Blöschl, G.; Reszler, C. Soil Moisture Updating by Ensemble Kalman Filtering in Real-Time Flood Forecasting. J. Hydrol. 2008, 357, 228–242. [Google Scholar] [CrossRef]
- Crow, W.T.; Ryu, D. A New Data Assimilation Approach for Improving Runoff Prediction Using Remotely-Sensed Soil Moisture Retrievals. Hydrol. Earth Syst. Sci. 2009, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xiong, L.; Liu, D.; Cheng, L.; Chen, J. High Spatial Resolution Simulation of Profile Soil Moisture by Assimilating Multi-Source Remote-Sensed Information into a Distributed Hydrological Model. J. Hydrol. 2021, 597, 126311. [Google Scholar] [CrossRef]
- Fereidoon, M.; Koch, M.; Brocca, L. Predicting Rainfall and Runoff Through Satellite Soil Moisture Data and SWAT Modelling for a Poorly Gauged Basin in Iran. Water 2019, 11, 594. [Google Scholar] [CrossRef] [Green Version]
- Han, E.; Merwade, V.; Heathman, G.C. Implementation of Surface Soil Moisture Data Assimilation with Watershed Scale Distributed Hydrological Model. J. Hydrol. 2012, 416–417, 98–117. [Google Scholar] [CrossRef]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products into Rainfall-Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2542–2555. [Google Scholar] [CrossRef]
- Ding, Z.; Lü, H.; Ahmed, N.; Zhu, Y.; Gou, Q.; Wang, X.; Liu, E.; Xu, H.; Pan, Y.; Sun, M. Soil Moisture Data Assimilation in MISDc for Improved Hydrological Simulation in Upper Huai River Basin, China. Water 2022, 14, 3476. [Google Scholar] [CrossRef]
- Scipal, K.; Scheffler, C.; Wagner, W. Soil Moisture-Runoff Relation at the Catchment Scale as Observed with Coarse Resolution Microwave Remote Sensing. Hydrol. Earth Syst. Sci. 2005, 9, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R. Spatial-Temporal Variability of Soil Moisture and Its Estimation across Scales. Water Resour. Res. 2010, 46, W02516. [Google Scholar] [CrossRef]
- Sahoo, A.K.; De Lannoy, G.J.M.; Reichle, R.H.; Houser, P.R. Assimilation and Downscaling of Satellite Observed Soil Moisture over the Little River Experimental Watershed in Georgia, USA. Adv. Water Resour. 2013, 52, 19–33. [Google Scholar] [CrossRef]
- Lievens, H.; Tomer, S.K.; Al Bitar, A.; De Lannoy, G.J.M.; Drusch, M.; Dumedah, G.; Hendricks Franssen, H.-J.; Kerr, Y.H.; Martens, B.; Pan, M.; et al. SMOS Soil Moisture Assimilation for Improved Hydrologic Simulation in the Murray Darling Basin, Australia. Remote Sens. Environ. 2015, 168, 146–162. [Google Scholar] [CrossRef]
- Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W. Assimilation of ASCAT Near-Surface Soil Moisture into the SIM Hydrological Model over France. Hydrol. Earth Syst. Sci. 2011, 15, 3829–3841. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Seo, D.-J.; Koren, V. Assimilation of Streamflow and in Situ Soil Moisture Data into Operational Distributed Hydrologic Models: Effects of Uncertainties in the Data and Initial Model Soil Moisture States. Adv. Water Resour. 2011, 34, 1597–1615. [Google Scholar] [CrossRef]
- Han, X.; Li, X.; Hendricks Franssen, H.J.; Vereecken, H.; Montzka, C. Spatial Horizontal Correlation Characteristics in the Land Data Assimilation of Soil Moisture. Hydrol. Earth Syst. Sci. 2012, 16, 1349–1363. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Janjić, T.; Schröter, J.; Hiller, W. A Unification of Ensemble Square Root Kalman Filters. Mon. Weather Rev. 2012, 140, 2335–2345. [Google Scholar] [CrossRef] [Green Version]
- Vetra-Carvalho, S.; Van Leeuwen, P.J.; Nerger, L.; Barth, A.; Altaf, M.U.; Brasseur, P.; Kirchgessner, P.; Beckers, J.-M. State-of-the-Art Stochastic Data Assimilation Methods for High-Dimensional Non-Gaussian Problems. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1445364. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, T.; Wang, Z.; Li, J.; Chai, W.; Tang, G.; Kong, L.; Chen, X. An Aerosol Vertical Data Assimilation System (NAQPMS-PDAF v1.0): Development and Application. Geosci. Model Dev. 2022, 15, 3555–3585. [Google Scholar] [CrossRef]
- Liang, X.; Losch, M.; Nerger, L.; Mu, L.; Yang, Q.; Liu, C. Using Sea Surface Temperature Observations to Constrain Upper Ocean Properties in an Arctic Sea Ice-Ocean Data Assimilation System. J. Geophys. Res. Oceans 2019, 124, 4727–4743. [Google Scholar] [CrossRef]
- Goodliff, M.; Bruening, T.; Schwichtenberg, F.; Li, X.; Lindenthal, A.; Lorkowski, I.; Nerger, L. Temperature Assimilation into a Coastal Ocean-Biogeochemical Model: Assessment of Weakly and Strongly Coupled Data Assimilation. Ocean Dyn. 2019, 69, 1217–1237. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Xu, S. Seasonal Arctic Sea Ice Prediction Using a Newly Developed Fully Coupled Regional Model With the Assimilation of Satellite Sea Ice Observations. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001938. [Google Scholar] [CrossRef] [Green Version]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient Data Assimilation for Spatiotemporal Chaos: A Local Ensemble Transform Kalman Filter. Phys. D Nonlinear Phenom. 2007, 230, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Gregg, W.W. Assimilation of SeaWiFS Data into a Global Ocean-Biogeochemical Model Using a Local SEIK Filter. J. Mar. Syst. 2007, 68, 237–254. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Janjić, T.; Schröter, J.; Hiller, W. A Regulated Localization Scheme for Ensemble-Based Kalman Filters. Q. J. R. Meteorol. Soc. 2012, 138, 802–812. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A Nested Ecohydrological Wireless Sensor Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2015–2019. [Google Scholar] [CrossRef]
- Kang, J.; Jin, R.; Li, X.; Ma, C.; Qin, J.; Zhang, Y. High Spatio-Temporal Resolution Mapping of Soil Moisture by Integrating Wireless Sensor Network Observations and MODIS Apparent Thermal Inertia in the Babao River Basin, China. Remote Sens. Environ. 2017, 191, 232–245. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Wang, J.H.; Heuvelink, G.B.M.; Jin, R.; Li, X.; Wang, J.F. Sampling Design Optimization of a Wireless Sensor Network for Monitoring Ecohydrological Processes in the Babao River Basin, China. Int. J. Geogr. Inf. Sci. 2015, 29, 92–110. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- ONeill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, M.J.; Colliander, A. SMAP Enhanced L2 Radiometer Half-Orbit 9 Km EASE-Grid Soil Moisture, Version 5 2021; National Snow and Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and Assessment of the SMAP Enhanced Passive Soil Moisture Product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Che, T.; Dai, L. Evaluation of SMAP and SMOS Soil Moisture Products Using Distributed Ground Observation Network in Cold and Arid Regions in the Northwest of China. In Proceedings of the IGARSS—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020; pp. 4731–4734. [Google Scholar]
- Zhang, L.; He, C.; Zhang, M.; Zhu, Y. Evaluation of the SMOS and SMAP Soil Moisture Products under Different Vegetation Types against Two Sparse in Situ Networks over Arid Mountainous Watersheds, Northwest China. Sci. China Earth Sci. 2019, 62, 703–718. [Google Scholar] [CrossRef]
- Yang, D.; Herath, S.; Musiake, K. A Hillslope-Based Hydrological Model Using Catchment Area and Width Functions. Hydrol. Sci. J. 2002, 47, 49–65. [Google Scholar] [CrossRef]
- Yang, D.; Gao, B.; Jiao, Y.; Lei, H.; Zhang, Y.; Yang, H.; Cong, Z. A Distributed Scheme Developed for Eco-Hydrological Modeling in the Upper Heihe River. Sci. China Earth Sci. 2015, 58, 36–45. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Hiller, W. Software for Ensemble-Based Data Assimilation Systems—Implementation Strategies and Scalability. Comput. Geosci. 2013, 55, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Tang, Q.; Mu, L. Efficient Ensemble Data Assimilation for Coupled Models with the Parallel Data Assimilation Framework: Example of AWI-CM (AWI-CM-PDAF 1.0). Geosci. Model Dev. 2020, 13, 4305–4321. [Google Scholar] [CrossRef]
- Mao, Y.; Crow, W.T.; Nijssen, B. A Framework for Diagnosing Factors Degrading the Streamflow Performance of a Soil Moisture Data Assimilation System. J. Hydrometeorol. 2019, 20, 79–97. [Google Scholar] [CrossRef]
- Chen, H.; Yang, D.; Liu, Y.; Zhang, B. Data Assimilation Technique Based on Ensemble Kalman Filter for Improving Soil Water Content Estimation. Trans. Chin. Soc. Agric. Eng. 2016, 32, 99–104. [Google Scholar] [CrossRef]
- Kumar, S.V.; Reichle, R.H.; Harrison, K.W.; Peters-Lidard, C.D.; Yatheendradas, S.; Santanello, J.A. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation. Water Resour. Res. 2012, 48, W03515. [Google Scholar] [CrossRef]
- Nayak, A.K.; Biswal, B.; Sudheer, K.P. Role of Hydrological Model Structure in the Assimilation of Soil Moisture for Streamflow Prediction. J. Hydrol. 2021, 598, 126465. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Rasmussen, J.; Madsen, H.; Jensen, K.H.; Refsgaard, J.C. Data Assimilation in Integrated Hydrological Modeling Using Ensemble Kalman Filtering: Evaluating the Effect of Ensemble Size and Localization on Filter Performance. Hydrol. Earth Syst. Sci. 2015, 19, 2999–3013. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Counillon, F.; Bethke, I.; Keenlyside, N.; Bocquet, M.; Shen, M. Optimising Assimilation of Hydrographic Profiles into Isopycnal Ocean Models with Ensemble Data Assimilation. Ocean Model. 2017, 114, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Burgan, H.I.; Aksoy, H. Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J. Hydrol. 2022, 604, 127249. [Google Scholar] [CrossRef]
- Burgers, G.; Jan van Leeuwen, P.; Evensen, G. Analysis Scheme in the Ensemble Kalman Filter. Mon. Weather Rev. 1998, 126, 1719–1724. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Mitchell, H.L. Data Assimilation Using an Ensemble Kalman Filter Technique. Mon. Weather Rev. 1998, 126, 16. [Google Scholar] [CrossRef]
- He, H.; Lei, L.; Whitaker, J.S.; Tan, Z. Impacts of Assimilation Frequency on Ensemble Kalman Filter Data Assimilation and Imbalances. J. Adv. Model Earth Syst. 2020, 12, e2020MS002187. [Google Scholar] [CrossRef]
- Dasgupta, A.; Hostache, R.; Ramsankaran, R.; Schumann, G.J.; Grimaldi, S.; Pauwels, V.R.N.; Walker, J.P. On the Impacts of Observation Location, Timing, and Frequency on Flood Extent Assimilation Performance. Water Res. 2021, 57, e2020WR028238. [Google Scholar] [CrossRef]
- Eyre, J.R. Observation Bias Correction Schemes in Data Assimilation Systems: A Theoretical Study of Some of Their Properties: Observation Bias Correction Schemes in Data Assimilation Systems. Q. J. R. Meteorol. Soc. 2016, 142, 2284–2291. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Radakovich, J.D.; da Silva, A.; Todling, R.; Verter, F. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System. J. Meteorol. Soc. Jpn. 2007, 85A, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Tian, J.; Yang, K.; Lu, H.; Li, X.; Yao, L.; Shi, J. Bias Correction of Satellite Soil Moisture through Data Assimilation. J. Hydrol. 2022, 610, 127947. [Google Scholar] [CrossRef]
Climatic Forcing Data | Unit | Error Accumulation | Distribution | Standard Deviation |
---|---|---|---|---|
Precipitation | mm/hour | multiplicative | lognormal | 0.3 |
Wind speed | m/s | multiplicative | lognormal | 0.3 |
Relative humidity | % | multiplicative | lognormal | 0.1 |
Air temperature | °C | additive | normal | 4 |
NSE | KGE | Pbias | RSR | RMSE | R2 | The Number of River Flow Series | |
---|---|---|---|---|---|---|---|
Calibration | 0.51 | 0.70 | 5.83 | 0.70 | 11.01 | 0.51 | 153 |
Open-loop | 0.45 | 0.73 | 12.12 | 0.74 | 12.57 | 0.45 | 459 |
ubRMSE (×10−2) | Pbias | The Number of Soil Moisture Gauges | |||
---|---|---|---|---|---|
Average | Interquartile Range (IQR) | Average | Interquartile Range (IQR) | ||
Open-loop | 12.91 | 7.86 | 25.98 | 59.29 | 27 |
ESTKF | 12.56 | 7.70 | 22.47 | 54.49 | 27 |
EnKF | 12.83 | 7.37 | 20.41 | 54.54 | 27 |
NSE | KGE | Pbias | RSR | RMSE | R2 | The Number of River Flow Series | |
---|---|---|---|---|---|---|---|
Open-loop | 0.45 | 0.73 | 12.12 | 0.74 | 12.57 | 0.45 | 459 |
ESTKF | 0.58 | 0.75 | −1.28 | 0.65 | 11.01 | 0.58 | 459 |
EnKF | 0.43 | 0.72 | 3.66 | 0.75 | 12.77 | 0.43 | 459 |
Flood Id | Start Date | End Date | Observation | |
---|---|---|---|---|
Flood Volume (×106 m3) | Flood Peak (m3/s) | |||
1 | 1 July 2015 | 7 July 2015 | 22.97 | 52.20 |
2 | 7 July 2015 | 15 July 2015 | 37.79 | 67.30 |
3 | 25 July 2015 | 31 July 2015 | 16.65 | 42.90 |
4 | 31 July 2015 | 6 August 2015 | 24.46 | 68.00 |
5 | 10 August 2015 | 20 August 2015 | 25.76 | 37.00 |
6 | 25 August 2015 | 31 August 2015 | 13.10 | 28.40 |
7 | 1 September 2015 | 6 September 2015 | 15.67 | 40.30 |
8 | 7 September 2015 | 13 September 2015 | 28.34 | 65.10 |
9 | 14 September 2015 | 20 September 2015 | 19.38 | 35.90 |
10 | 24 May 2016 | 17 June 2016 | 43.61 | 27.90 |
11 | 18 June 2016 | 3 July 2016 | 34.63 | 54.00 |
12 | 5 July 2016 | 18 July 2016 | 59.88 | 123.00 |
13 | 20 July 2016 | 24 July 2016 | 12.49 | 34.20 |
14 | 25 July 2016 | 28 July 2016 | 10.32 | 40.60 |
15 | 3 August 2016 | 10 August 2016 | 11.78 | 23.70 |
16 | 12 August 2016 | 17 August 2016 | 30.73 | 72.10 |
17 | 18 August 2016 | 28 August 2016 | 77.81 | 115.00 |
18 | 15 September 2016 | 25 September 2016 | 35.56 | 44.20 |
19 | 27 May 2017 | 1 June 2017 | 9.05 | 24.10 |
20 | 3 June 2017 | 21 June 2017 | 30.71 | 27.90 |
21 | 1 July 2017 | 15 July 2017 | 26.67 | 45.30 |
22 | 22 July 2017 | 30 July 2017 | 24.92 | 48.30 |
23 | 1 August 2017 | 5 August 2017 | 9.71 | 38.80 |
24 | 6 August 2017 | 9 August 2017 | 9.23 | 48.50 |
25 | 19 August 2017 | 26 August 2017 | 27.60 | 68.30 |
26 | 3 September 2017 | 7 September 2017 | 17.22 | 53.60 |
27 | 12 September 2017 | 24 September 2017 | 52.93 | 61.00 |
Relative Error of Flood Volume (%) | Relative Error of Flood Volume (%) | The Number of Flood Events | |||
---|---|---|---|---|---|
Average | Interquartile Range (IQR) | Average | Interquartile Range (IQR) | ||
Open-loop | 19.90 | 33.99 | 8.57 | 38.37 | 27 |
ESTKF | 2.52 | 29.69 | −8.89 | 30.43 | 27 |
EnKF | 8.17 | 31.52 | 0.65 | 39.11 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cong, Z.; Yang, D. Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sens. 2023, 15, 1852. https://doi.org/10.3390/rs15071852
Li Y, Cong Z, Yang D. Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sensing. 2023; 15(7):1852. https://doi.org/10.3390/rs15071852
Chicago/Turabian StyleLi, Yibo, Zhentao Cong, and Dawen Yang. 2023. "Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter" Remote Sensing 15, no. 7: 1852. https://doi.org/10.3390/rs15071852
APA StyleLi, Y., Cong, Z., & Yang, D. (2023). Remotely Sensed Soil Moisture Assimilation in the Distributed Hydrological Model Based on the Error Subspace Transform Kalman Filter. Remote Sensing, 15(7), 1852. https://doi.org/10.3390/rs15071852