Continuously Updated Digital Elevation Models (CUDEMs) to Support Coastal Inundation Modeling
Abstract
:1. Introduction
1.1. Overview of NCEI DEMs
1.2. DEM Projects
1.2.1. NOAA Tsunami Program and National Tsunami Hazard Mitigation Program
1.2.2. Consumer Option for an Alternative System to Allocate Losses (COASTAL) Act
1.2.3. Bipartisan Budget Act of 2018: NOAA Supplemental Funding for Hurricanes Harvey, Irma, and Maria
1.2.4. National Oceanographic Partnership Program (NOPP) Predicting Hurricane Coastal Impacts, FY21-24
1.3. Motivation for Comprehensive DEM Program
2. Materials and Methods
2.1. Study Area
2.2. Continuously Updated DEM Program
2.3. DEM Generation with Free and Open Source Software
- Gather elevation data;
- Convert data to common vertical and horizontal datums, units, and file formats;
- Evaluate and edit data in GIS software;
- Build and evaluate DEMs in GIS software and with statistical analyses;
- Document DEM development in technical reports and metadata;
- Distribute DEMs for public availability.
- Lastly, CUDEM tiles are named in the following manner:
- ncei[RR]_[n][YY]x[yy]_[W][XXX]x[xx]_[DDDD]v[#].tif
- with the following information in place of the brackets []:
- [RR]—“19” or “13”, for DEM tile resolution of 1/9th or 1/3rd in arc-seconds;
- [n]—“n” or “s”, for Northern or Southern hemisphere;
- [YY]x[yy]—Numeric latitude of tile’s northern (top) border in decimal degrees;
- [W]—“W” or “E”, for Western or Eastern hemisphere;
- [XXX]x[xx]—Numeric longitude of tile’s western (left) border in decimal degrees;
- [DDDD]—Year of tile generation;
- [#]—Version number of the release.
2.4. Spatial Metadata Generation
2.5. Vertical Accuracy Assessment
3. Results
3.1. CUDEMs
3.2. Data Discovery and Access
3.3. Documentation
3.4. Spatial Metadata
3.5. Vertical Accuracy
4. Discussion
4.1. Benefits of CUDEM Program
4.1.1. Rapid Update of CUDEMs
4.1.2. Consistency across Spatial Scales
4.2. Challenges
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOAA. What Percentage of the American Population Lives Near the Coast? Available online: https://oceanservice.noaa.gov/facts/population.html (accessed on 8 December 2022).
- Amante, C.; Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2009. [CrossRef]
- Amante, C.; Love, M.R.; Taylor, L.A.; Eakins, B.W. Digital Elevation Models of Panama City, Florida: Procedures, Data Sources, and Analysis; NOAA: Boulder, CO, USA, 2011.
- Love, M.R.; Amante, C.; Taylor, L.A.; Eakins, B.W. Digital Elevation Models of New Orleans, Louisiana: Procedures, Data Sources, and Analysis; NOAA: Boulder, CO, USA, 2011.
- Amante, C.; Love, M.R.; Taylor, L.A.; Eakins, B.W. Digital Elevation Models of Mobile, Alabama: Procedures, Data Sources, and Analysis; NOAA: Boulder, CO, USA, 2011.
- Carignan, K.S.; Taylor, L.A.; Eakins, B.W.; Caldwell, R.J.; Friday, D.Z.; Grothe, P.R.; Lim, E. Digital Elevation Models of Central California and San Francisco Bay: Procedures, Data Sources, and Analysis; NOAA: Boulder, CO, USA, 2011.
- Lim, E.; Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Warnken, R.R.; Medley, P.R. Digital Elevation Models of Craig, Alaska: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2009.
- Lim, E.; Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Warnken, R.R.; Medley, P.R. Digital Elevation Model of Portland, Maine: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2009.
- Caldwell, R.J.; Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Grothe, P.R.; Lim, E.; Friday, D.Z. Digital Elevation Models of Santa Monica, California: Procedures, Data Sources, and Analysis; NOAA: Boulder, CO, USA, 2011.
- Grothe, P.R.; Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Caldwell, R.J.; Lim, E.; Friday, D.Z. Digital Elevation Models of the Virgin Islands: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2012.
- Friday, D.Z.; Taylor, L.A.; Eakins, B.W.; Warnken, R.R.; Carignan, K.S.; Caldwell, R.J.; Lim, E.; Grothe, P.R. Digital Elevation Models of Palm Beach, Florida: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2012.
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol.1—Northeast Atlantic 1999; NOAA: Washington, DC, USA, 1999. [CrossRef]
- Danielson, J.J.; Poppenga, S.K.; Brock, J.C.; Evans, G.A.; Tyler, D.J.; Gesch, D.B.; Thatcher, C.A.; Barras, J.A. Topobathymetric Elevation Model Development using a New Methodology: Coastal National Elevation Database. J. Coast. Res. 2016, 76, 75–89. [Google Scholar] [CrossRef]
- Eakins, B.W.; Grothe, P.R. Challenges in Building Coastal Digital Elevation Models. J. Coast. Res. 2014, 30, 942–953. [Google Scholar] [CrossRef]
- Gesch, D.; Wilson, R. Development of a Seamless Multisource Topographic/Bathymetric Elevation Model of Tampa Bay. Mar. Technol. Soc. J. 2001, 35, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, C.A.; Brock, J.C.; Danielson, J.J.; Poppenga, S.K.; Gesch, D.B.; Palaseanu-Lovejoy, M.E.; Barras, J.A.; Evans, G.A.; Gibbs, A.E. Creating a Coastal National Elevation Database (CoNED) for Science and Conservation Applications. J. Coast. Res. 2016, 76, 64–74. [Google Scholar] [CrossRef]
- Amante, C. Consideration of Elevation Uncertainty in Coastal Flood Models. 2018. Available online: https://scholar.colorado.edu/concern/graduate_thesis_or_dissertations/fq977t92p (accessed on 14 March 2023).
- Amante, C.J. Estimating Coastal Digital Elevation Model Uncertainty. J. Coast. Res. 2018, 34, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- Hare, R.; Eakins, B.; Amante, C. Modelling bathymetric uncertainty. Int. Hydrogr. Rev. 2011, 6, 31–42. [Google Scholar]
- Amante, C.J.; Eakins, B.W. Accuracy of Interpolated Bathymetry in Digital Elevation Models. J. Coast. Res. 2016, 76, 123–133. [Google Scholar] [CrossRef]
- Taylor, L.A.; Eakins, B.W. Seamlessly integrating bathymetric and topographic data to support tsunami modeling and forecasting efforts. In Ocean Globe; Breman, J., Ed.; ESRI Press Academic: Redlands, CA, USA, 2010; pp. 37–56. ISBN 978-1-58948-219-7. [Google Scholar]
- Hébert, H.; Heinrich, P.; Schindelé, F.; Piatanesi, A. Far-field simulation of tsunami propagation in the Pacific Ocean: Impact on the Marquesas Islands (French Polynesia). J. Geophys. Res. Ocean. 2001, 106, 9161–9177. [Google Scholar] [CrossRef]
- Kowalik, Z.; Knight, W.; Logan, T.; Whitmore, P. Numerical modeling of the global tsunami: Indonesian Tsunami of 26 December 2004. Sci. Tsunami Hazards 2004, 23, 40–56. [Google Scholar]
- Kowalik, Z.; Horrillo, J.; Knight, W.; Logan, T. Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering. J. Geophys. Res. Ocean. 2008, 113, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Horrillo, J.; Knight, W.; Kowalik, Z. Kuril Islands tsunami of November 2006: 2. Impact at Crescent City by local enhancement. J. Geophys. Res. Ocean. 2008, 113, 1–12. [Google Scholar] [CrossRef]
- Titov, V.; Rabinovich, A.B.; Mofjeld, H.O.; Thomson, R.E.; González, F.I. The Global Reach of the 26 December 2004 Sumatra Tsunami. Science 2005, 309, 2045–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, M.W.; Losada, I.J.; Menéndez, P.; Reguero, B.G.; Díaz-Simal, P.; Fernández, F. The global flood protection savings provided by coral reefs. Nat. Commun. 2018, 9, 2186. [Google Scholar] [CrossRef] [Green Version]
- Rey, W.; Mendoza, E.T.; Salles, P.; Zhang, K.; Teng, Y.-C.; Trejo-Rangel, M.A.; Franklin, G.L. Hurricane flood risk assessment for the Yucatan and Campeche State coastal area. Nat. Hazards 2019, 96, 1041–1065. [Google Scholar] [CrossRef]
- Hopkins, J.; Elgar, S.; Raubenheimer, B. Observations and model simulations of wave-current interaction on the inner shelf. J. Geophys. Res. Ocean. 2016, 121, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, J.; Elgar, S.; Raubenheimer, B. Storm Impact on Morphological Evolution of a Sandy Inlet. J. Geophys. Res. Ocean. 2018, 123, 5751–5762. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Geophysical Data Center. 5-Minute Gridded Global Relief Data (ETOPO5); NOAA: Boulder, CO, USA, 1993. [CrossRef]
- NOAA National Geophysical Data Center. 2-Minute Gridded Global Relief Data (ETOPO2) Version 2; NOAA: Boulder, CO, USA, 2006. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 2—Southeast Atlantic; NOAA: Boulder, CO, USA, 1999. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 3—Florida and East Gulf of Mexico; NOAA: Boulder, CO, USA, 2001.
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 4—Central Gulf of Mexico; NOAA: Boulder, CO, USA, 2001.
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 5—Western Gulf of Mexico; NOAA: Boulder, CO, USA, 2001. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 6—Southern California; NOAA: Boulder, CO, USA, 2003. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 7—Central Pacific; NOAA: Boulder, CO, USA, 2003. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 8—Northwest Pacific; NOAA: Boulder, CO, USA, 2003. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model Vol. 9—Puerto Rico; NOAA: Boulder, CO, USA, 2005. [CrossRef]
- NOAA National Geophysical Data Center. U.S. Coastal Relief Model—Southern California Version 2; NOAA: Boulder, CO, USA, 2012. [CrossRef]
- NOAA National Geophysical Data Center. Southern Alaska Coastal Relief Model; NOAA: Boulder, CO, USA, 2009. [CrossRef]
- Taylor, L.A.; Eakins, B.W.; Warnken, R.R.; Carignan, K.S.; Sharman, G.F.; Schoolcraft, D.C.; Sloss, P.W. Digital Elevation Models of Myrtle Beach, South Carolina: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2008.
- Taylor, L.A.; Eakins, B.W.; Carignan, K.S.; Warnken, R.R.; Sazonova, T.S.; Schoolcraft, D.C. Digital Elevation Model of Galveston, Texas: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2008.
- Eakins, B.W.; Taylor, L.A.; Carignan, K.S.; Warnken, R.R.; Lim, E.; Medley, P.R. Digital Elevation Model of Nantucket, Massachusetts: Procedures, Data Sources and Analysis; NOAA: Boulder, CO, USA, 2009.
- Eakins, B.; Danielson, J.J.; Sutherland, M.; Mclean, S. A framework for a seamless depiction of merged bathymetry and topography along US coasts. In Proceedings of the US HYDRO Conference Proceedings, National Harbor, MD, USA, 16–19 March 2015. [Google Scholar]
- Gica, E. A Tsunami Forecast Model for Kihei, Hawaii; NOAA: Seattle, WA, USA, 2015. [CrossRef]
- Gica, E. A Tsunami Forecast Model for Midway Atoll; NOAA: Seattle, WA, USA, 2015. [CrossRef]
- Gica, E. A Tsunami Forecast Model for Santa Barbara, California; NOAA: Seattle, WA, USA, 2015. [CrossRef]
- Titov, V.V.; Gonzalez, F.I.; Bernard, E.N.; Eble, M.C.; Mofjeld, H.O.; Newman, J.C.; Venturato, A.J. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 2005, 35, 35–41. [Google Scholar] [CrossRef]
- Adams, L.M.; Gonzalez, F.I.; LeVeque, R.J. Tsunami Hazard Assessment of Whatcom County, Washington, Project Report—Version 2. 2019. Available online: https://digital.lib.washington.edu/researchworks/handle/1773/45586 (accessed on 14 March 2023).
- LeVeque, R.J.; Gonzalez, F.I.; Adams, L.M. Tsunami Hazard Assessment of Snohomish County, Washington. 2021. Available online: http://depts.washington.edu/ptha/WA_EMD_Snoho2/SnohomishCountyTHAv3_2021-02-05.pdf (accessed on 14 March 2023).
- LeVeque, R.J.; Adams, L.M.; Gonzalez, F.I. Tsunami Hazard Assessment of Northwestern Coast of Washington. 2021. Available online: http://depts.washington.edu/ptha/WA_EMD_2020/NWWA_THA.pdf (accessed on 14 March 2023).
- Titov, V.V.; Arcas, D.; Moore, C.W.; LeVeque, R.J.; Adams, L.M.; Gonzalez, F.I. Tsunami Hazard Assessment of Bainbridge Island, Washington. 2018. Available online: http://depts.washington.edu/ptha/WA_EMD_Bainbridge/BainbridgeIslandTHA_draft20181130b.pdf (accessed on 14 March 2023).
- Arcas, D.; Gica, E.; Titov, V.V. Tsunami Inundation Modeling of San Juan Islands, Washington, Due to a Cascadia Subduction Zone Earthquake; NOAA: Seattle, WA, USA, 2020. [CrossRef]
- Allan, J.; Zhang, J.; O’Brien, F. Open-File Report O-21-08, Tsunami Inundation Modeling Update for the Northern Oregon Coast: Tillamook and Clatsop Counties. 2021. Available online: https://www.oregongeology.org/pubs/ofr/O-21-08_report.pdf (accessed on 14 March 2023).
- Dolcimascolo, A.; Eungard, D.W.; Allen, C.; LeVeque, R.J.; Adams, L.M.; Arcas, D.; Titov, V.V.; González, F.I.; Moore, C.; Garrison-Laney, C.E.; et al. Tsunami Hazard Maps of the Puget Sound and Adjacent Waters—Model Results from an Extended L1 Mw 9.0 Cascadia Subduction Zone Megathrust Earthquake Scenario: Washington Geological Survey Map Series 2021-01. Available online: https://fortress.wa.gov/dnr/geologydata/tsunami_hazard_maps/ger_ms2021-01_tsunami_hazard_puget_sound.zip (accessed on 14 March 2023).
- California Geological Survey. California Governor’s Office of Emergency Services Tsunami Hazard Area Map, Humboldt County 2021. 2021. Available online: https://www.conservation.ca.gov/cgs/tsunami/maps/humboldt (accessed on 14 March 2023).
- Consumer Option for an Alternative System to Allocate Losses Act of 2012; Public Law 112–141; U.S. Government Publishing Office: Washington, DC, USA, 2012. Available online: https://www.govinfo.gov/content/pkg/PLAW-112publ141/pdf/PLAW-112publ141.pdf (accessed on 14 March 2023).
- Moghimi, S.; Van der Westhuysen, A.; Abdolali, A.; Myers, E.; Vinogradov, S.; Ma, Z.; Liu, F.; Mehra, A.; Kurkowski, N. Development of an ESMF Based Flexible Coupling Application of ADCIRC and WAVEWATCH III for High Fidelity Coastal Inundation Studies. J. Mar. Sci. Eng. 2020, 8, 308. [Google Scholar] [CrossRef]
- van der Westhuysen, A.; Ogden, F.; Flowers, T.; Fanara, T.; Myers, E.; Dean, C.; Allen, A.; Lindley, C.; Zachry, B.; Fujisaki-Manome, A.; et al. Whitepaper on the Development of a Unified Forecast System for Coastal Total Water Level Prediction; NOAA: Silver Spring, MD, USA, 2022. [CrossRef]
- Bipartisan Budget Act of 2018; Public Law 115–123; U.S. Government Publishing Office: Washington, DC, USA, 2018. Available online: https://www.govinfo.gov/content/pkg/PLAW-115publ123/pdf/PLAW-115publ123.pdf (accessed on 14 March 2023).
- Goetz, J.; Brenning, A.; Marcer, M.; Bodin, X. Modeling the precision of structure-from-motion multi-view stereo digital elevation models from repeated close-range aerial surveys. Remote Sens. Environ. 2018, 210, 208–216. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors 2018, 18, 3843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-Borne Cloud-Native Satellite-Derived Bathymetry (SDB) Models Using ICESat-2 And Sentinel-2. Geophys. Res. Lett. 2021, 48, e2020GL092170. [Google Scholar] [CrossRef]
- Tanaka, H.; Adityawan, M.B.; Mano, A. Morphological changes at the Nanakita River mouth after the Great East Japan Tsunami of 2011. Coast. Eng. 2014, 86, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Haerens, P.; Bolle, A.; Trouw, K.; Houthuys, R. Definition of storm thresholds for significant morphological change of the sandy beaches along the Belgian coastline. Geomorphology 2012, 143–144, 104–117. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Zachry, B.C.; Booth, W.J.; Rhome, J.R.; Sharon, T.M. A National View of Storm Surge Risk and Inundation. Weather Clim. Soc. 2015, 7, 109–117. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Cooper, H.M.; Chen, Q.; Fletcher, C.H.; Barbee, M.M. Assessing vulnerability due to sea-level rise in Maui, Hawai‘i using LiDAR remote sensing and GIS. Clim. Chang. 2013, 116, 547–563. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information. ETOPO 2022 15 Arc-Second Global Relief Model; NOAA: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Love, M.; Amante, C.; Carignan, K.; MacFerrin, M.; Lim, E. CUDEM (Version 1.9.0) [Computer Software]. Available online: https://github.com/ciresdem/cudem (accessed on 8 December 2022).
- Caress, D.; Chayes, D. MB-System (Version 5.7.8) [Computer Software]. Available online: https://github.com/dwcaress/MB-System (accessed on 8 December 2022).
- Parker, B. The Integration of Bathymetry, Topography and Shoreline and the Vertical Datum Transformations behind It. Int. Hydrogr. Rev. 2002, 3, 14–26. [Google Scholar]
- European Space Agency, Sinergise. Copernicus Global Digital Elevation Model, Distributed by OpenTopography. 2021. [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Neumann, T.A.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, B.; Harbeck, K.; Gibbons, A.; Lee, J.; Luhcke, S.B.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 5 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]
- Neuenschwander, A.L.; Pitts, K.L.; Jelley, B.P.; Robbins, J.; Klotz, B.; Popescu, C.; Nelson, R.F.; Harding, D.; Pederson, D.; Sheridan, R. ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 5 [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- NOAA. NOAA NCEI. Available online: https://www.ngdc.noaa.gov/mgg/dat/dems/tiled_tr/ (accessed on 1 November 2022).
- Aldabet, S.; Goldstein, E.B.; Lazarus, E.D. Thresholds in Road Network Functioning on US Atlantic and Gulf Barrier Islands. Earths Future 2022, 10, e2021EF002581. [Google Scholar] [CrossRef]
- Beckman, J.N.; Long, J.W.; Hawkes, A.D.; Leonard, L.A.; Ghoneim, E. Investigating Controls on Barrier Island Overwash and Evolution during Extreme Storms. Water 2021, 13, 2829. [Google Scholar] [CrossRef]
- Johnston, J.; Cassalho, F.; Miesse, T.; Ferreira, C.M. Projecting the effects of land subsidence and sea level rise on storm surge flooding in Coastal North Carolina. Sci. Rep. 2021, 11, 21679. [Google Scholar] [CrossRef]
- Marsooli, R.; Wang, Y. Quantifying Tidal Phase Effects on Coastal Flooding Induced by Hurricane Sandy in Manhattan, New York Using a Micro-Scale Hydrodynamic Model. Front. Built Environ. 2020, 6, 149. [Google Scholar] [CrossRef]
- Stephens, T.A.; Savant, G.; Sanborn, S.C.; Wallen, C.M.; Roy, S. Monolithic Multiphysics Simulation of Compound Flooding. J. Hydraul. Eng. 2022, 148, 05022003. [Google Scholar] [CrossRef]
- Cassalho, F.; Miesse, T.W.; de Lima, A.d.S.; Khalid, A.; Ferreira, C.M.; Sutton-Grier, A.E. Coastal Wetlands Exposure to Storm Surge and Waves in the Albemarle-Pamlico Estuarine System during Extreme Events. Wetlands 2021, 41, 49. [Google Scholar] [CrossRef]
- Warnell, K.; Olander, L.; Currin, C. Sea level rise drives carbon and habitat loss in the U.S. mid-Atlantic coastal zone. PLoS Clim. 2022, 1, e0000044. [Google Scholar] [CrossRef]
- Martinez, M.T.; Calle, L.; Romañach, S.S.; Gawlik, D.E. Evaluating temporal and spatial transferability of a tidal inundation model for foraging waterbirds. Ecosphere 2022, 13, e4030. [Google Scholar] [CrossRef]
- Shen, X.; Detenbeck, N.; You, M. Spatial and temporal variations of estuarine stratification and flushing time across the continental U.S. Estuar. Coast. Shelf Sci. 2022, 279, 108147. [Google Scholar] [CrossRef]
- Lemke, L.; Janssen, M.S.; Miller, J.K. Mitigation of Channel Shoaling at a Sheltered Inlet Subject to Flood Gate Operations. J. Mar. Sci. Eng. 2020, 8, 865. [Google Scholar] [CrossRef]
- Janssen, M.S.; Lemke, L.; Miller, J.K.; Douglas, W.S. Fortescue Inlet: Offshore Deposition Basins for Navigation Channel Management in Small Craft Inlets. J. Waterw. Port Coast. Ocean Eng. 2022, 148, 05021019. [Google Scholar] [CrossRef]
- Ilori, C.O.; Knudby, A. An Approach to Minimize Atmospheric Correction Error and Improve Physics-Based Satellite-Derived Bathymetry in a Coastal Environment. Remote Sens. 2020, 12, 2752. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Fernandez-MontBlanc, T.; Pringle, W.; Yu, H.-C.; Cui, L.; Moghimi, S. Global seamless tidal simulation using a 3D unstructured-grid model. Geosci. Model Dev. Discuss. 2022, 1–25. [Google Scholar] [CrossRef]
- Mickey, R.C.; Passeri, D.L. A Database of Topo-Bathy Cross-Shore Profiles and Characteristics for U.S. Atlantic and Gulf of Mexico Sandy Coastlines. Data 2022, 7, 92. [Google Scholar] [CrossRef]
- FAA Reauthorization Act of 2018; Public Law 115–254; U.S. Government Publishing Office: Washington, DC, USA, 2018. Available online: https://www.govinfo.gov/content/pkg/PLAW-115publ254/pdf/PLAW-115publ254.pdf (accessed on 14 March 2023).
- NOAA. Digital Coast Data Access Viewer—Data Report. Available online: https://coast.noaa.gov/dataviewer_stats/ (accessed on 1 November 2022).
- National Oceanic & Atmospheric Administration. Method of Splitting Tsunami (MOST) Software Manual; NOAA: Seattle, WA, USA, 2006.
- Titov, V.V.; Gonzalez, F.I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; NOAA: Seattle, WA, USA, 1997.
- Hengl, T. Finding the right pixel size. Comput. Geosci. 2006, 32, 1283–1298. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.J.; Wang, Z.; Ye, F.; Moghimi, S.; Myers, E.; Yu, H. Tidal simulation revisited. Ocean Dyn. 2022, 72, 187–205. [Google Scholar] [CrossRef]
- Couasnon, A.; Eilander, D.; Muis, S.; Veldkamp, T.I.E.; Haigh, I.D.; Wahl, T.; Winsemius, H.C.; Ward, P.J. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat. Hazards Earth Syst. Sci. 2020, 20, 489–504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Ye, F.; Yu, H.; Sun, W.; Moghimi, S.; Myers, E.; Nunez, K.; Zhang, R.; Wang, H.; Roland, A.; et al. Simulating compound flooding events in a hurricane. Ocean Dyn. 2020, 70, 621–640. [Google Scholar] [CrossRef]
- Huang, W.; Ye, F.; Zhang, Y.J.; Park, K.; Du, J.; Moghimi, S.; Myers, E.; Pe’eri, S.; Calzada, J.R.; Yu, H.C.; et al. Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Model. 2021, 158, 101735. [Google Scholar] [CrossRef]
- Kim, H.; Villarini, G.; Jane, R.; Wahl, T.; Misra, S.; Michalek, A. On the generation of high-resolution probabilistic design events capturing the joint occurrence of rainfall and storm surge in coastal basins. Int. J. Climatol. 2022, 43, 761–771. [Google Scholar] [CrossRef]
- Loveland, M.; Kiaghadi, A.; Dawson, C.N.; Rifai, H.S.; Misra, S.; Mosser, H.; Parola, A. Developing a Modeling Framework to Simulate Compound Flooding: When Storm Surge Interacts With Riverine Flow. Front. Clim. 2021, 2, 609610. [Google Scholar] [CrossRef]
- Valle-Levinson, A.; Olabarrieta, M.; Heilman, L. Compound flooding in Houston-Galveston Bay during Hurricane Harvey. Sci. Total Environ. 2020, 747, 141272. [Google Scholar] [CrossRef] [PubMed]
- Merwade, V.; Cook, A.; Coonrod, J. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environ. Model. Softw. 2008, 23, 1300–1311. [Google Scholar] [CrossRef]
- Song, Y.; Huang, J.; Toorman, E.; Yang, G. Reconstruction of River Topography for 3D Hydrodynamic Modelling Using Surveyed Cross-Sections: An Improved Algorithm. Water 2020, 12, 3539. [Google Scholar] [CrossRef]
- Merwade, V.M.; Maidment, D.R.; Goff, J.A. Anisotropic considerations while interpolating river channel bathymetry. J. Hydrol. 2006, 331, 731–741. [Google Scholar] [CrossRef]
- Dysarz, T. Development of RiverBox—An ArcGIS Toolbox for River Bathymetry Reconstruction. Water 2018, 10, 1266. [Google Scholar] [CrossRef] [Green Version]
- Caviedes-Voullième, D.; Morales-Hernández, M.; López-Marijuan, I.; García-Navarro, P. Reconstruction of 2D river beds by appropriate interpolation of 1D cross-sectional information for flood simulation. Environ. Model. Softw. 2014, 61, 206–228. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Magruder, L.; Neumann, T.; Kurtz, N. ICESat-2 Early Mission Synopsis and Observatory Performance. Earth Space Sci. 2021, 8, e2020EA001555. [Google Scholar] [CrossRef]
- Tian, X.; Shan, J. Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8195–8209. [Google Scholar] [CrossRef]
- Gesch, D.B. Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise Assessments: Mobile Bay, Alabama Case Study. J. Coast. Res. 2013, 63, 197–210. [Google Scholar] [CrossRef]
- Gesch, D.B. Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Front. Earth Sci. 2018, 6, 230. [Google Scholar] [CrossRef] [Green Version]
- Enwright, N.M.; Wang, L.; Borchert, S.M.; Day, R.H.; Feher, L.C.; Osland, M.J. The Impact of Lidar Elevation Uncertainty on Mapping Intertidal Habitats on Barrier Islands. Remote Sens. 2018, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Amante, C.J. Uncertain seas: Probabilistic modeling of future coastal flood zones. Int. J. Geogr. Inf. Sci. 2019, 33, 2188–2217. [Google Scholar] [CrossRef]
- NOAA. Estimation of Vertical Uncertainties in VDatum. Available online: https://vdatum.noaa.gov/docs/est_uncertainties.html (accessed on 7 March 2023).
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS J. Photogramm. Remote Sens. 2018, 139, 255–271. [Google Scholar] [CrossRef]
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. Corrigendum to “A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States” [ISPRS J. Photogram. Rem. Sens. 139 (2018) 255–271]. ISPRS J. Photogramm. Remote Sens. 2020, 166, 63–67. [Google Scholar] [CrossRef]
Geographic Location | Vertical Datum | Dates |
---|---|---|
CONUS | North American Vertical Datum of 1988 (NAVD88) | 1992–present |
Hawaii | ** Local Mean Sea Level | -- |
Puerto Rico | Puerto Rico Vertical Datum of 2002 (PRVD02) | 2002–present |
USVI | Virgin Islands Vertical Datum of 2009 (VIVD09) | 2009–present |
Guam | Guam Vertical Datum of 2004 (GUVD04) | 2004–present |
CNMI | Northern Marianas Vertical Datum of 2003 (NMVD03) | 2003–present |
American Samoa | American Samoa Vertical Datum of 2002 (ASVD02) | 2002–2020 |
Name | Description | URL |
---|---|---|
Arcticdem | Arctic DEM | https://www.pgc.umn.edu/data/arcticdem/ |
Bluetopo | A curated collection of high- resolution seafloor models from NOAA. | https://www.nauticalcharts.noaa.gov/data/bluetopo.html |
Buoys | Buoy information from NOAA | https://www.ndbc.noaa.gov |
Charts | NOS Nautical Charts, including electronic Nautical Charts and Raster Nautical Charts | https://www.charts.noaa.gov/ |
Chs | Canadian Hydrographic Surveys | https://open.canada.ca |
copernicus | Copernicus elevation data | https://doi.org/10.5069/G9028PQB |
digital_coast | Lidar and Raster data from NOAA’s Digital Coast | https://coast.noaa.gov |
Earthdata | NASA Earthdata | https://cmr.earthdata.nasa.gov |
Ehydro | USACE hydrographic surveys | https://navigation.usace.army.mil/Survey/Hydro |
Emodnet | EmodNET European Bathymetric/Topographic DEM | https://portal.emodnet-bathymetry.eu/ |
Fabdem | FABDEM (Forest and Buildings removed Copernicus DEM) | https://data.bris.ac.uk/data/dataset/s5hqmjcdj8yo2ibzi9b4ew3sn |
Gebco | A global continuous terrain model for ocean and land with a spatial resolution of 15 arc-seconds. | https://www.gebco.net/data_and_products/gridded_bathymetry_data/ |
Gmrt | The Global MultiResolution Topography synthesis | https://www.gmrt.org |
Hrdem | High-Resolution DEMs from Canada | https://open.canada.ca |
hydrolakes | HydroLakes vector and derived elevations | https://www.hydrosheds.org/products/hydrolakes |
mar_grav | Marine Gravity Satellite Altimetry Topography from Scripps. | https://topex.ucsd.edu/WWW_html/mar_grav.html |
Mgds | Marine Geoscience Data System | https://www.marine-geo.org |
Multibeam | NOAA Multibeam bathymetric data | https://data.ngdc.noaa.gov/platforms/ |
Nasadem | NASA Digital Elevation Model | https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem |
ncei_thredds | NCEI DEM THREDDS Catalog | https://www.ngdc.noaa.gov/thredds/catalog/demCatalog.html |
Ngs | NGS monuments | http://geodesy.noaa.gov/ |
Nos | NOS Hydrographic DataBase (NOSHDB) | https://www.ngdc.noaa.gov/mgg/bathymetry/hydro.html |
Osm | Open Street Map | https://wiki.openstreetmap.org/ |
srtm_plus | SRTM15+: Global bathymetry and topography at 15 arc-seconds. | https://topex.ucsd.edu/WWW_html/srtm15_plus.html |
Tides | Tide station information from NOAA | https://tidesandcurrents.noaa.gov/ |
Tnm | USGS National Map | https://apps.nationalmap.gov/tnmaccess/ |
Trackline | NOAA trackline bathymetry data | http://www.ngdc.noaa.gov/trackline/ |
Usiei | US Interagency Elevation Inventory | https://coast.noaa.gov/inventory/ |
Vdatum | Vertical Datum transformation grids | https://vdatum.noaa.gov; https://cdn.proj.org/ |
Name | Description |
---|---|
average | Generate an average DEM using GDAL’s gdal_grid command. |
coastline | Generate a coastline (land/sea mask) using a variety of data sources. |
cudem | CUDEM integrated DEM generation. Generate a topographic-bathymetric integrated DEM using a variety of data sources. |
IDW | Generate a DEM using an Inverse Distance Weighted algorithm. If weights are used, will generate a UIDW DEM, using weight values as inverse uncertainty, as described here: https://ir.library.oregonstate.edu/concern/graduate_projects/79407x932 (accessed on 14 March 2023), and here: https://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python (accessed on 14 March 2023) |
invdst | Generate an inverse distance DEM using GDAL’s gdal_grid command. |
linear | Generate a linear DEM using GDAL’s gdal_grid command. |
mbgrid | Generate a DEM using MB-System’s mbgrid command (spline interpolation). |
nearest | Generate a nearest DEM using GDAL’s gdal_grid command. |
nearneighbor | Generate a DEM using GMT’s nearneighbor command. |
num | Generate an un-interpolated DEM using various gridding modes, including options from GMT’s xyz2grd command. |
scipy | Generate a DEM using Scipy’s gridding algorithms (linear, cubic, nearest). |
stacks | Generate a DEM using a raster stacking method. By default, calculate the (weighted) mean where overlapping cells occur. Set supersede to True to overwrite overlapping cells with higher weighted data. |
surface | Generate a DEM using GMT’s surface command (spline interpolation). |
triangulate | Generate a DEM using GMT’s triangulate command. |
vdatum | Generate a vertical datum conversion grid. |
CUDEM Subset Location: Vertical Datum | 1/9th Arc-Second Tile Count | 1/3rd Arc-Second Tile Count |
---|---|---|
CONUS: NAVD88 | 819 | 267 |
Hawaii: MSL | 54 | 79 |
Puerto Rico: PRVD02 | 26 | 29 |
USVI: VIVD09 | 9 | 15 |
Guam: GUVD04 | 4 | 2 |
CNMI: NMVD03 | 6 | 4 |
American Samoa: ASVD02 | 7 | 7 |
Total | 925 | 403 |
CUDEM Subset Location: Vertical Datum | Mean Error ± One Standard Deviation (m) | Root Mean Square Error (RMSE) (m) |
---|---|---|
Entire CUDEM collection: Varies | 0.12 ± 0.75 | 0.76 |
CONUS: NAVD88 | 0.12 ± 0.72 | 0.73 |
Hawaii: MSL | −0.45 ± 4.03 | 4.06 |
Puerto Rico: PRVD02 | 0.24 ± 1.15 | 1.18 |
USVI: VIVD09 | 0.78 ± 2.55 | 2.66 |
Guam: GUVD04 | −0.51 ± 1.20 | 1.30 |
CNMI: NMVD03 | −0.54 ± 1.27 | 1.38 |
American Samoa: ASVD02 | 0.57 ± 2.78 | 2.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amante, C.J.; Love, M.; Carignan, K.; Sutherland, M.G.; MacFerrin, M.; Lim, E. Continuously Updated Digital Elevation Models (CUDEMs) to Support Coastal Inundation Modeling. Remote Sens. 2023, 15, 1702. https://doi.org/10.3390/rs15061702
Amante CJ, Love M, Carignan K, Sutherland MG, MacFerrin M, Lim E. Continuously Updated Digital Elevation Models (CUDEMs) to Support Coastal Inundation Modeling. Remote Sensing. 2023; 15(6):1702. https://doi.org/10.3390/rs15061702
Chicago/Turabian StyleAmante, Christopher J., Matthew Love, Kelly Carignan, Michael G. Sutherland, Michael MacFerrin, and Elliot Lim. 2023. "Continuously Updated Digital Elevation Models (CUDEMs) to Support Coastal Inundation Modeling" Remote Sensing 15, no. 6: 1702. https://doi.org/10.3390/rs15061702