A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV-LiDAR and Field Data Collection
2.3. Methodology
2.3.1. Pre-Processing of UAV-LiDAR Point Cloud Data
2.3.2. ITD and Seed Points Detection under Leaf-Off Conditions
2.3.3. ITS in Leaf-On Conditions
2.3.4. Accuracy Evaluation
3. Results
3.1. ITD Results and Seed Points Selection from the UAV-LiDAR Data in Leaf-Off Seasons
3.2. ITS Results from UAV-LiDAR Points under Leaf-On Conditions
3.3. ITS Results Improvement Based on the Process of Refining
4. Discussion
4.1. The Extraction of Seed Points by the ITS Methods
4.2. ITS Methods with or without Seed Points
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hyyppa, J.; Yu, X.; Hyyppa, H.; Vastaranta, M.; Holopainen, M.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Vaaja, M.; Koskinen, J.; et al. Advances in forest inventory using airborne laser scanning. Remote Sens. 2012, 4, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Hofstad, O. Review of biomass and volume functions for individual trees and shrubs in southeast Africa. J. Trop. For. Sci. 2005, 17, 151–162. [Google Scholar]
- Parresol, B.R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 1999, 45, 573–593. [Google Scholar]
- Shrestha, D.B.; Sharma, R.P.; Bhandari, S.K. Individual tree aboveground biomass for Castanopsis indica in the mid-hills of Nepal. Agrofor. Syst. 2018, 92, 1611–1623. [Google Scholar] [CrossRef]
- Ozcelik, R.; Eraslan, T. Two-stage sampling to estimate individual tree biomass. Turk. J. Agric. For. 2012, 36, 389–398. [Google Scholar]
- Chander, G.; Haque, M.O.; Micijevic, E.; Barsi, J.A. A procedure for radiometric recalibration of Landsat 5 TM reflective-band data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 556–574. [Google Scholar] [CrossRef]
- Dai, W.; Yang, B.; Dong, Z.; Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Cao, L.; Liu, H.; Fu, X.; Zhang, Z.; Shen, X.; Ruan, H. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests 2019, 10, 145. [Google Scholar] [CrossRef] [Green Version]
- Dalla Corte, A.P.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; de Almeida, D.R.A.; Trautenmueller, J.W.; et al. Forest inventory with high-density UAV-LiDAR: Machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric. 2020, 179, 105815. [Google Scholar] [CrossRef]
- Ghanbari Parmehr, E.; Amati, M. Individual tree canopy parameters estimation using UAV-based photogrammetric and LiDAR point clouds in an urban park. Remote Sens. 2021, 13, 2062. [Google Scholar] [CrossRef]
- Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Hudak, A.T.; Parham, L.M.; Butler, B.W. Quantifying understory vegetation density using small-footprint airborne lidar. Remote Sens. Environ. 2018, 215, 330–342. [Google Scholar] [CrossRef]
- Berk, P.; Stajnko, D.; Belsak, A.; Hocevar, M. Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LiDAR measurement system. Comput. Electron. Agric. 2020, 169, 105158. [Google Scholar] [CrossRef]
- Wu, X.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests. Remote Sens. 2019, 11, 908. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jin, X.; Pukkala, T.; Li, F. Predicting individual tree diameter of larch (Larix olgensis) from UAV-LiDAR data using six different algorithms. Remote Sens. 2022, 14, 1125. [Google Scholar] [CrossRef]
- Kim, S.; McGaughey, R.J.; Andersen, H.-E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Xu, W.; Luan, Z.; Xu, X. Lidar applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives. Forests 2021, 12, 550. [Google Scholar] [CrossRef]
- Beland, M.; Parker, G.; Sparrow, B.; Harding, D.; Chasmer, L.; Phinn, S.; Antonarakis, A.; Strahler, A. On promoting the use of lidar systems in forest ecosystem research. For. Ecol. Manag. 2019, 450, 117484. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Gao, S.; Lu, J. An automated hierarchical approach for three-dimensional segmentation of single trees using UAV LiDAR data. Remote Sens. 2018, 10, 1999. [Google Scholar] [CrossRef] [Green Version]
- Bazezew, M.N.; Hussin, Y.A.; Kloosterman, E.H. Integrating Airborne LiDAR and Terrestrial Laser Scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 638–652. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of aboveground biomass of Robinia pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Allouis, T.; Durrieu, S.; Vega, C.; Couteron, P. Stem volume and above-ground biomass estimation of individual pine trees from lidar data: Contribution of full-waveform signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Jaskierniak, D.; Lucieer, A.; Kuczera, G.; Turner, D.; Lane, P.N.J.; Benyon, R.G.; Haydon, S. Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 2021, 171, 171–187. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Valbuena, R.; Cardil, A.; Mohan, M.; Alves Almeida, D.R.; Broadbent, E.N.; Zambrano, A.M.A.; Wilkinson, B.; et al. Treetop: A shiny-based application and R package for extracting forest information from LiDAR data for ecologists and conservationists. Methods Ecol. Evol. 2022, 13, 1164–1176. [Google Scholar] [CrossRef]
- Balsi, M.; Esposito, S.; Fallavollita, P.; Nardinocchi, C. Single-tree detection in high-density lidar data from UAV-based survey. Eur. J. Remote Sens. 2018, 51, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Brede, B.; Lau, A.; Bartholomeus, H.M.; Kooistra, L. Comparing RIEGL RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial LiDAR. Sensors 2017, 17, 2371. [Google Scholar] [CrossRef]
- Picos, J.; Bastos, G.; Miguez, D.; Alonso, L.; Armesto, J. Individual tree detection in a eucalyptus plantation using unmanned aerial vehicle (UAV)-LiDAR. Remote Sens. 2020, 12, 885. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; Wang, L. Individual mangrove tree measurement using UAV-based lidar data: Possibilities and challenges. Remote Sens. Environ. 2019, 223, 34–49. [Google Scholar] [CrossRef]
- Goldbergs, G.; Levick, S.R.; Lawes, M.; Edwards, A. Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne LiDAR. Remote Sens. Environ. 2018, 205, 141–150. [Google Scholar] [CrossRef]
- Anjin, C.; Yongmin, K.; Yongil, K.; Yangdam, E. Estimation of individual tree biomass from airborne LiDAR data using tree height and crown diameter. Disaster Adv. 2012, 5, 360–365. [Google Scholar]
- Kim, Y.; Chang, A.; Kim, Y.; Song, J.; Kim, C. Estimation of forest biomass from airborne LiDAR data as measures against Global Warming-Individual Tree Unit and Forest Stand Unit. Disaster Adv. 2012, 5, 295–299. [Google Scholar]
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 2016, 7, 1236–1245. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.; Chen, Z.; Fu, L.; Tian, W.; Jiang, F.; Yi, J.; Du, Z.; Sun, H. Performance and sensitivity of individual tree segmentation methods for UAV-LiDAR in multiple forest types. Remote Sens. 2022, 14, 298. [Google Scholar] [CrossRef]
- Apostol, B.; Lorent, A.; Petrila, M.; Gancz, V.; Badea, O. Height extraction and stand volume estimation based on fusion airborne LiDAR data and terrestrial measurements for a Norway spruce Picea abies (L.) karst. Test site in Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sohn, G.; Bredif, M. A hybrid framework for single tree detection from airborne laser scanning data: A case study in temperate mature coniferous forests in Ontario, Canada. ISPRS J. Photogramm. Remote Sens. 2014, 98, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Zhou, Q.; Gao, S.; Shen, Y. Automatic detection of single trees in airborne laser scanning data through gradient orientation clustering. Forests 2018, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Ene, L.; Naesset, E.; Gobakken, T. Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. Int. J. Remote Sens. 2012, 33, 5171–5193. [Google Scholar] [CrossRef]
- Fu, L.; Liu, Q.; Sun, H.; Wang, Q.; Li, Z.; Chen, E.; Pang, Y.; Song, X.; Wang, G. Development of a system of compatible individual tree diameter and aboveground biomass prediction models using error-in-variable regression and airborne LiDAR data. Remote Sens. 2018, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Lim, S.; Shen, X.; Yebra, M. A hybrid method for segmenting individual trees from airborne LiDAR data. Comput. Electron. Agric. 2019, 163, 104871. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Khoshelham, K.; Chen, C.; He, H. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding. ISPRS J. Photogramm. Remote Sens. 2021, 175, 326–339. [Google Scholar] [CrossRef]
- Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Morsdorf, F.; Meier, E.; Allgöwer, B.; Nüesch, D. Clustering in airborne laser scanning raw data for segmentation of single trees. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 34, W13. [Google Scholar]
- Ferraz, A.; Bretar, F.; Jacquemoud, S.; Goncalves, G.; Pereira, L.; Tome, M.; Soares, P. 3-D mapping of a multi-layered Mediterranean forest using ALS data. Remote Sens. Environ. 2012, 121, 210–223. [Google Scholar] [CrossRef]
- Huo, L.; Lindberg, E.; Holmgren, J. Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD). Remote Sens. Environ. 2022, 270, 112857. [Google Scholar] [CrossRef]
- Zhen, Z.; Yang, L.; Ma, Y.; Wei, Q.; Il Jin, H.; Zhao, Y. Upscaling aboveground biomass of larch (Larix olgensis Henry) plantations from field to satellite measurements: A comparison of individual tree-based and area-based approaches. GIScience Remote Sens. 2022, 59, 722–743. [Google Scholar] [CrossRef]
- Hamraz, H.; Jacobs, N.B.; Contreras, M.A.; Clark, C.H. Deep learning for conifer/deciduous classification of airborne LiDAR 3D point clouds representing individual trees. ISPRS J. Photogramm. Remote Sens. 2019, 158, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Kaminska, A.; Lisiewicz, M.; Sterenczak, K. Single tree classification using multi-temporal ALS data and CIR imagery in mixed old-growth forest in Poland. Remote Sens. 2021, 13, 5101. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Xu, C.; Xu, H.; Zou, X.; Chen, H.Y.H.; Ruan, H. The abundance and community structure of soil arthropods in reclaimed coastal saline soil of managed poplar plantations. Geoderma 2018, 327, 130–137. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive tin densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; de Boissieu, F.; Achim, A. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Qi, C.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating individual trees in a savanna woodland using small footprint LiDAR data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar]
- Nasiri, V.; Darvishsefat, A.A.; Arefi, H.; Pierrot-Deseilligny, M.; Namiranian, M.; Le Bris, A. Unmanned aerial vehicles (UAV)-based canopy height modeling under leaf-on and leaf-off conditions for determining tree height and crown diameter (case study: Hyrcanian mixed forest). Can. J. For. Res. 2021, 51, 962–971. [Google Scholar] [CrossRef]
- Cheng, Y. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 790–799. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.P.; Bouvier, M.; Durrieu, S. PTrees: A point-based approach to forest tree extraction from LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 98–108. [Google Scholar] [CrossRef]
- Ayrey, E.; Fraver, S.; Kershaw, J.A., Jr.; Kenefic, L.S.; Hayes, D.; Weiskittel, A.R.; Roth, B.E. Layer stacking: A novel algorithm for individual forest tree segmentation from LiDAR point clouds. Can. J. Remote Sens. 2017, 43, 16–27. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of individual longleaf pine (Pinus palustris mill.) tree attributes from field and lidar data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Fu, H.; Li, H.; Dong, Y.; Xu, F.; Chen, F. Segmenting individual tree from TLS point clouds using improved DBSCAN. Forests 2022, 13, 566. [Google Scholar] [CrossRef]
- Young, D.J.N.; Koontz, M.J.; Weeks, J. Optimizing aerial imagery collection and processing parameters for drone-based individual tree mapping in structurally complex conifer forests. Methods Ecol. Evol. 2022, 13, 1447–1463. [Google Scholar] [CrossRef]
- Yan, W.; Guan, H.; Cao, L.; Yu, Y.; Li, C.; Lu, J. A self-adaptive mean shift tree-segmentation method using UAV LiDAR data. Remote Sens. 2020, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, R.; Virdis, S.G.P.; Ventura, A.; Ghisu, T.; Duce, P.; Pellizzaro, G. An automated approach for wood-leaf separation from terrestrial LiDAR point clouds using the density based clustering algorithm DBSCAN. Agric. For. Meteorol. 2018, 262, 434–444. [Google Scholar] [CrossRef]
- Itakura, K.; Miyatani, S.; Hosoi, F. Estimating tree structural parameters via automatic tree segmentation from LiDAR point cloud data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 555–564. [Google Scholar] [CrossRef]
- Lisiewicz, M.; Kaminska, A.; Kraszewski, B.; Sterenczak, K. Correcting the results of CHM-based individual tree detection algorithms to improve their accuracy and reliability. Remote Sens. 2022, 14, 1822. [Google Scholar] [CrossRef]
Plot ID | Tree Number Leaf-Off/Leaf-On | Planting Spacing (m) | Point Cloud Density pts⋅m−2 Leaf-Off/Leaf-On | Tree Height (m) Leaf-Off | ||
---|---|---|---|---|---|---|
Max | Min | Mean | ||||
Y8-1 | 57/57 | 4 × 6 | 12.61/29.91 | 22.23 | 19.76 | 21.17 |
Y11-1 | 42/42 | 4 × 8 | 22.21/55.7 | 26.29 | 21.95 | 24.69 |
Y12-1 | 23/22 | 3 × 5 | 9.49/45.67 | 26.63 | 23.57 | 25.39 |
Y12-2 | 25/25 | 3 × 5 | 9.14/45.75 | 26.13 | 23.90 | 25.17 |
Y14-2 | 53/50 | 3 × 8 | 18.49/35.27 | 24.63 | 21.97 | 23.55 |
Y14-4 | 39/39 | 3 × 8 | 17.91/34.83 | 27.09 | 23.24 | 25.55 |
Y16-1 | 18/18 | 6 × 5 | 10.99/41.94 | 28.90 | 25.40 | 27.56 |
Y16-2 | 31/30 | 6 × 5 | 27.67/55.06 | 30.95 | 27.05 | 29.15 |
Y16-3 | 29/29 | 6 × 5 | 27.31/56.54 | 30.17 | 26.48 | 28.59 |
Y17-1 | 48/48 | 6 × 5 | 22.45/73.92 | 30.58 | 25.95 | 28.18 |
Y17-2 | 40/39 | 6 × 5 | 17.48/39.83 | 27.38 | 24.36 | 25.92 |
Y20-3 | 24/22 | 5 × 6 | 36.47/101.65 | 33.71 | 31.98 | 32.74 |
Plot | Local Maximum– Diameter (m) | Local Minimum– Diameter (m) | Mean Shift– Bandwidth (m) |
---|---|---|---|
Y8-1 | 5.5 | 5.5 | 2 |
Y11-1 | 5.5 | 5.5 | 2 |
Y12-1,2 | 5 | 5 | 1.7 |
Y14-2,4 | 5 | 5 | 2 |
Y16-1,2,3 | 6 | 6 | 2.5 |
Y17-1,2 | 6 | 6 | 2.5 |
Y20-3 | 6 | 6 | 2.5 |
Plot | Dalponte2016— Diameter (m) * | Li2012— Diameter (m) * | PTrees— k1 *, k2 * | Layer Stacking— w1 *, w2 * |
---|---|---|---|---|
Y8-1 | 5 | 5 | 500, 250 | 3, 1.5 |
Y11-1 | 5 | 5 | 600, 300 | 3, 1.5 |
Y12-1,2 | 4.5 | 4.5 | 600, 300 | 3, 1.5 |
Y14-2 | 4 | 4 | 400, 200 | 4, 2 |
Y14-4 | 4.5 | 4.5 | 600, 300 | 3, 1.5 |
Y16-1 | 5.5 | 5.5 | 700, 350 | 7, 3.5 |
Y16-2,3 | 4.5 | 4.5 | 600, 300 | 4, 2 |
Y17-1,2 | 5.5 | 5.5 | 700, 350 | 7, 3.5 |
Y20-3 | 6 | 6 | 1500, 750 | 7, 3.5 |
Plot ID | Reference Trees | Local Maximum-CHM | Local Minimum-PCD | Mean Shift | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | r | p | F | TP | r | p | F | TP | r | p | F | ||
Y8-1 | 57 | 57 | 1.00 | 1.00 | 1.00 | 57 | 1.00 | 1.00 | 1.00 | 57 | 1.00 | 1.00 | 1.00 |
Y11-1 | 42 | 42 | 1.00 | 0.91 | 0.95 | 42 | 1.00 | 0.98 | 0.99 | 42 | 1.00 | 0.98 | 0.99 |
Y12-1 | 23 | 18 | 0.78 | 1.00 | 0.88 | 22 | 0.96 | 0.92 | 0.94 | 23 | 1.00 | 0.92 | 0.96 |
Y12-2 | 25 | 21 | 0.84 | 0.95 | 0.89 | 24 | 0.96 | 1.00 | 0.98 | 24 | 0.96 | 1.00 | 0.98 |
Y14-2 | 53 | 47 | 0.89 | 0.90 | 0.90 | 51 | 0.96 | 1.00 | 0.98 | 50 | 0.94 | 0.98 | 0.96 |
Y14-4 | 39 | 34 | 0.87 | 0.89 | 0.88 | 38 | 0.97 | 0.97 | 0.97 | 39 | 1.00 | 1.00 | 1.00 |
Y16-1 | 18 | 18 | 1.00 | 0.86 | 0.92 | 18 | 1.00 | 1.00 | 1.00 | 18 | 1.00 | 1.00 | 1.00 |
Y16-2 | 31 | 27 | 0.87 | 0.96 | 0.92 | 31 | 1.00 | 1.00 | 1.00 | 31 | 1.00 | 1.00 | 1.00 |
Y16-3 | 29 | 27 | 0.93 | 0.93 | 0.93 | 29 | 1.00 | 1.00 | 1.00 | 29 | 1.00 | 1.00 | 1.00 |
Y17-1 | 48 | 45 | 0.94 | 0.98 | 0.96 | 48 | 1.00 | 1.00 | 1.00 | 48 | 1.00 | 1.00 | 1.00 |
Y17-2 | 40 | 37 | 0.93 | 1.00 | 0.96 | 40 | 1.00 | 0.95 | 0.98 | 40 | 1.00 | 1.00 | 1.00 |
Y20-3 | 24 | 22 | 0.92 | 0.92 | 0.92 | 24 | 1.00 | 1.00 | 1.00 | 23 | 0.96 | 1.00 | 0.98 |
All Plots | 429 | 395 | 0.92 | 0.94 | 0.93 | 424 | 0.99 | 0.99 | 0.99 | 424 | 0.99 | 0.99 | 0.99 |
Methods | TP | r | p | F |
---|---|---|---|---|
Dalponte2016 | 382 | 0.91 | 0.91 | 0.91 |
Li2012 | 383 | 0.91 | 0.91 | 0.91 |
PTrees | 370 | 0.88 | 0.89 | 0.88 |
Layerstacking | 375 | 0.89 | 0.91 | 0.90 |
Seeds + Kmeans | 412 | 0.98 | 0.97 | 0.98 |
Seeds + Dalponte2016 | 415 | 0.99 | 0.98 | 0.98 |
Seeds + Silva2016 | 418 | 0.99 | 0.99 | 0.99 |
Methods | Median Time (s) | Maximum Time (s) | Minimum Time (s) | Mean Time(s) |
---|---|---|---|---|
Dalponte2016 | 0.47 | 5.66 | 0.23 | 0.88 |
Li2012 | 28.17 | 1070.41 | 5.59 | 196.88 |
PTrees | 17.00 | 354.90 | 12.18 | 56.15 |
LayerStacking | 38.38 | 1008.69 | 20.26 | 143.37 |
Seeds + Kmeans | 3.88 | 10.81 | 3.28 | 3.97 |
Seeds + Dalponte2016 | 4.37 | 11.17 | 2.04 | 4.41 |
Seeds + Silva2016 | 4.00 | 10.87 | 1.98 | 4.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Y.; Xu, D.; Wang, H.; Li, X.; Xu, X. A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points. Remote Sens. 2023, 15, 1619. https://doi.org/10.3390/rs15061619
Pu Y, Xu D, Wang H, Li X, Xu X. A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points. Remote Sensing. 2023; 15(6):1619. https://doi.org/10.3390/rs15061619
Chicago/Turabian StylePu, Yihan, Dandan Xu, Haobin Wang, Xin Li, and Xia Xu. 2023. "A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points" Remote Sensing 15, no. 6: 1619. https://doi.org/10.3390/rs15061619
APA StylePu, Y., Xu, D., Wang, H., Li, X., & Xu, X. (2023). A New Strategy for Individual Tree Detection and Segmentation from Leaf-on and Leaf-off UAV-LiDAR Point Clouds Based on Automatic Detection of Seed Points. Remote Sensing, 15(6), 1619. https://doi.org/10.3390/rs15061619