Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Acquisition of Datasets for the Classification of LULC Features
2.3. Definition of LULC Classes
2.4. Classification of LULC from 1978 to 2020
2.4.1. Iso-Cluster Unsupervised Classification (Step 1)
2.4.2. Supervised Random Forest (RF) Classification (Step 2)
2.4.3. Referral and Reclassification of Classified Datasets (Step 3)
2.4.4. Digitization (Step 4)
2.5. Post Classification Processing of Time Series Classified Data
2.6. Accuracy Assessment of the Final Classified LULC Datasets of 1978, 1989, 2000, 2011, and 2020
2.7. Detection of Changes in and Transformation of LULC
2.8. Estimation of Carbon Stock Reduction Based on the Loss of Closed Forests and Mangrove Forests
3. Results and Discussion
3.1. Accuracies of the Classified LULC Datasets
3.2. High-Performance Land Use Classification by Integrating Modern Techniques and Classical Approaches to Tackle Landscape Features
3.3. Transformation of LULC within the Last 40 Years
3.4. Consequences of the Changes in and Transformation of LULC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). Myanmar. Country Report. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020; pp. 1–66. [Google Scholar]
- FAO (Food and Agriculture Organization of the United Nations). Myanmar. Country Report. Global Forest Resources Assessment 2010; Forest Department, FAO: Rome, Italy, 2010; pp. 1–52. [Google Scholar]
- RECOFTC (Regional Community Forestry Training Center for Asia and the Pacific). Social Forestry and Climate Change in the ASEAN Region: Situational Analysis 2020; RECOFTC: Bangkok, Thailand, 2020; pp. 1–112. [Google Scholar]
- Zöckler, C.; Delany, S.; Barber, J. Sustainable Coastal Zone Management in Myanmar 2013; ArcCona Ecological Consultants: Cambridge, UK, 2013. [Google Scholar]
- Connette, G.; Oswald, P.; Songer, M.; Leimgruber, P. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region. Remote Sens. 2016, 8, 882. [Google Scholar] [CrossRef] [Green Version]
- Oo, N.W. Present State and Problems of Mangrove Management in Myanmar. Trees 2002, 16, 218–223. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests Were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [Green Version]
- Forest Department, Ministry of Forestry. Myanmar. Asia-Pacific Forestry Sector Outlook Study: Country Report—Union of Myanmar; Forestry Policy and Planning Division, Food and Agricultural Organization of the United Nations, FAO: Rome, Italy, 1997; pp. 1–43. [Google Scholar]
- Hu, Y.; Hu, Y. Land Cover Changes and Their Driving Mechanisms in Central Asia from 2001 to 2017 Supported by Google Earth Engine. Remote Sens. 2019, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S. Comparison of Satellite Images Classification Techniques Using Landsat-8 Data for Land Cover Extraction. Int. J. Intell. Comput. Inf. Sci. 2021, 21, 29–43. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of Different Machine Learning Methods for Land Cover Mapping of a Mediterranean Area Using Multi-Seasonal Landsat Images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492–509. [Google Scholar] [CrossRef]
- Ouchra, H.; Belangour, A. Satellite Image Classification Methods and Techniques: A Survey. In Proceedings of the 2021 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 24–26 August 2021; pp. 1–6. [Google Scholar]
- Htwe, T.N.; Kywe, M.; Buerkert, A.; Brinkmann, K. Transformation Processes in Farming Systems and Surrounding Areas of Inle Lake, Myanmar, during the Last 40 Years. J. Land Use Sci. 2015, 10, 205–223. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- IUCN (International Union for Conservation of Nature). IUCN Welcomes the Republic of the Union of Myanmar as a New State Member. Available online: https://www.iucn.org/news/secretaria/201803/iucn-welcomes-republic-union-myanmar-new-state-member (accessed on 24 November 2022).
- DoA (Department of Agriculture). Ministry of Agriculture, Livestock and Irrigation, Kyunsu, Myanmar. Rec. Kyunsu Townsh. 2021; unpublished work. [Google Scholar]
- DoP (Department of Population), Ministry of Labour, Immigration and Population. The 2014 Myanmar Population and Housing Census: Kyunsu Township Report; Ministry of Labour, Immigration and Population: Nay Pyi Taw, Myanmar, 2017; pp. 1–54. [Google Scholar]
- MIMU-GIS (Myanmar Information Management Unit-Geographic Information System). Hard to Reach Village Tract May 2019. Available online: http://35.224.137.9/layers/geonode%3Ahard_to_reach_vt_may2019 (accessed on 24 November 2022).
- NASA (National Aeronautics and Space Administration). POWER| Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 5 January 2023).
- MIMU-GIS (Myanmar Information Management Unit-Geographic Information System). Myanmar National Boundary MIMU v9.3. Available online: http://35.224.137.9/layers/geonode%3Ammr_polbnda_adm0_mimu_250k (accessed on 24 November 2022).
- ESRI (Environmental Systems Research Institute). ArcGIS 10.4.1 for Desktop Quick Start Guide—Quick Start Guides| ArcGIS Desktop. Available online: https://desktop.arcgis.com/en/quick-start-guides/10.4/arcgis-desktop-quick-start-guide.htm (accessed on 13 February 2023).
- Yale University Landsat Collections| Center for Earth Observation. Available online: https://yceo.yale.edu/landsat-collections (accessed on 17 February 2023).
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat Satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- USGS (United States Geological Survey). EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 13 February 2023).
- USGS (United States Geological Survey). What Are the Band Designations for the Landsat Satellites? Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites (accessed on 14 February 2023).
- ADPC (Asian Disaster Preparedness Centre). Regional Land Cover Monitoring System. Available online: https://landcovermapping.org/en/landcover/ (accessed on 24 November 2022).
- Benediktsson, J.A.; Kanellopoulos, I. Classification of Multisource and Hyperspectral Data Based on Decision Fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Steele, B.M. Combining Multiple Classifiers: An Application Using Spatial and Remotely Sensed Information for Land Cover Type Mapping. Remote Sens. Environ. 2000, 74, 545–556. [Google Scholar] [CrossRef]
- Huang, Z.; Lees, B.G. Combining Non-Parametric Models for Multisource Predictive Forest Mapping. Photogramm. Eng. Remote Sens. 2004, 70, 415–425. [Google Scholar] [CrossRef]
- GISGeography Supervised and Unsupervised Classification in Remote Sensing. Available online: https://gisgeography.com/supervised-unsupervised-classification-arcgis/ (accessed on 24 November 2022).
- Goswami, A.K.; Sharma, S.; Kumar, P. Nearest Clustering Algorithm for Satellite Image Classification in Remote Sensing Applications. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 3768–3772. [Google Scholar]
- Major, D.J.; Baret, F.; Guyot, G. A Ratio Vegetation Index Adjusted for Soil Brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Clim. Appl. Meteorol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A Mangrove Forest Map of China in 2015: Analysis of Time Series Landsat 7/8 and Sentinel-1A Imagery in Google Earth Engine Cloud Computing Platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A Method for Integrating MODIS and Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-Cover Mapping Using Random Forest Classification and Incorporating NDVI Time-Series and Texture: A Case Study of Central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin: A Python Tool for the Download and Processing of Remote Sensing Images in QGIS. J. Open Source Softw. 2021, 6, 1–6. [Google Scholar] [CrossRef]
- QGIS Development Team Download QGIS for Your Platform. Available online: https://qgis.org/en/site/forusers/download.html (accessed on 13 February 2023).
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Bwangoy, J.-R.B.; Hansen, M.C.; Roy, D.P.; De Grandi, G.D.; Justice, C.O. Wetland Mapping in the Congo Basin Using Optical and Radar Remotely Sensed Data and Derived Topographical Indices. Remote Sens. Environ. 2010, 114, 73–86. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia—Aiming for a Regional View through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-Contextual Information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Davenport, A.E.; Davis, J.D.; Woo, I.; Grossman, E.E.; Barham, J.; Ellings, C.S.; Takekawa, J.Y. Comparing Automated Classification and Digitization Approaches to Detect Change in Eelgrass Bed Extent during Restoration of a Large River Delta. Northwest Sci. 2017, 91, 272–282. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-05272-9. [Google Scholar]
- Cetin, M. A Satellite Based Assessment of the Impact of Urban Expansion around a Lagoon. Int. J. Environ. Sci. Technol. 2009, 6, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the Most Carbon-Rich Forests in the Tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Wai, P.; Su, H.; Li, M. Estimating Aboveground Biomass of Two Different Forest Types in Myanmar from Sentinel-2 Data with Machine Learning and Geostatistical Algorithms. Remote Sens. 2022, 14, 2146. [Google Scholar] [CrossRef]
- Pham, T.D.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; To, T.T.; Trinh, H.X.; Kieu, L.Q.; Takeuchi, W. Estimating Mangrove Above-Ground Biomass Using Extreme Gradient Boosting Decision Trees Algorithm with Fused Sentinel-2 and ALOS-2 PALSAR-2 Data in Can Gio Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 777. [Google Scholar] [CrossRef] [Green Version]
- Pham, M.H.; Do, T.H.; Pham, V.-M.; Bui, Q.-T. Mangrove Forest Classification and Aboveground Biomass Estimation Using an Atom Search Algorithm and Adaptive Neuro-Fuzzy Inference System. PLoS ONE 2020, 15, 1–24e0233110. [Google Scholar] [CrossRef] [PubMed]
- Forest Department, Ministry of Natural Resources and Environmental Conservation, Myanmar. Forest in Myanmar; Forest Department, Ministry of Natural Resources and Environmental Conservation: Nay Pyi Taw, Myanmar, 2020. [Google Scholar]
- White, L.; Harris, N.L.; Zutta, B.R.; Saatchi, S.S.; Brown, S.; Salas, W.; Buermann, W.; Silman, M.; Petrova, S.; Lewis, S.L. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proc. Natl. Acad. Sci. USA 2010, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Habib, S.; Al-Ghamdi, S.G. Estimation of Above-Ground Carbon-Stocks for Urban Greeneries in Arid Areas: Case Study for Doha and FIFA World Cup Qatar 2022. Front. Environ. Sci. 2021, 9, 635365. [Google Scholar] [CrossRef]
- Senoo, T.; Kobayashi, F.; Tanaka, S.; Sugimura, T. Improvement of Forest Type Classification by SPOT HRV with 20 m Mesh DTM. Int. J. Remote Sens. 1990, 11, 1011–1022. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Naing Tun, Z.; Dargusch, P.; McMoran, D.J.; McAlpine, C.; Hill, G. Patterns and Drivers of Deforestation and Forest Degradation in Myanmar. Sustainability 2021, 13, 7539. [Google Scholar] [CrossRef]
- Leimgruber, P.; Kelly, D.S.; Steininger, M.K.; Brunner, J.; Müller, T.; Songer, M. Forest Cover Change Patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 2005, 32, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.L.; Jachowski, N.R.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the Conservation Implications of an Internationally-Engaged Myanmar. Glob. Environ. Change 2014, 24, 321–333. [Google Scholar] [CrossRef]
- de Alban, J.D.T.; Jamaludin, J.; de Wen, D.W.; Than, M.M.; Webb, E.L. Improved Estimates of Mangrove Cover and Change Reveal Catastrophic Deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liu, Z.; Wang, J.; Liu, X. Impacts of Different Rural Settlement Expansion Patterns on Eco-Environment and Implications in the Loess Hilly and Gully Region, China. Front. Environ. Sci. 2022, 10, 279. [Google Scholar] [CrossRef]
- Myint, P. National Report of Myanmar on the Sustainable Management of The Bay of Bengal Large Marine Ecosystem (BOBLME); FAO: Rome, Italy, 2004; p. 61. [Google Scholar]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to Mangroves from Climate Change and Adaptation Options: A Review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Ellison, A.M. Managing Mangroves with Benthic Biodiversity in Mind: Moving beyond Roving Banditry. J. Sea Res. 2008, 59, 2–15. [Google Scholar] [CrossRef]
- Smithsonian Institution Sea Level Rise. Available online: https://ocean.si.edu/through-time/ancient-seas/sea-level-rise (accessed on 24 November 2022).
- Sartohadi, J.; Marfai, M.A.; Mardiatno, D. Coastal Zone Management Due to Abrasion along the Coastal Area of Tegal, Central Java Indonesia. In Proceedings of the International Conference on “Coastal Environment and Management: For the Future Human Lives in Coastal Regions”, Shima Central Hotel SOCIA, Shima, Japan, 24 February 2009; Department of Geography, Graduate School of Environmental Studies, Nagoya University: Nagoya, Japan; pp. 37–44.
- Richards, D.R.; Friess, D.A. Rates and Drivers of Mangrove Deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Donald, P.F.; Round, P.D.; Aung, T.D.W.; Grindley, M.; Steinmetz, R.; Shwe, N.M.; Buchanan, G.M. Social Reform and a Growing Crisis for Southern Myanmar’s Unique Forests. Conserv. Biol. 2015, 29, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, T.; Hess, A.; Horning, N.; Khaing, T.; Thein, Z.M.; Aung, K.M.; Aung, K.H.; Phyo, P.; Tun, Y.L.; Oo, A.H.; et al. Losing a Jewel—Rapid Declines in Myanmar’s Intact Forests from 2002–2014. PLoS ONE 2017, 12, 1–22.e0176364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO (Food and Agriculture Organization of the United Nations); UNDP (United Nations Development Programme). Integrating Agriculture in National Adaptation Plans: The Philippines Case Study; FAO: Rome, Italy, 2018. [Google Scholar]
- NASA (National Aeronautics and Space Administration). Biomass Earthdata Dashboard. Available online: https://earthdata.nasa.gov/maap-biomass (accessed on 3 January 2023).
Agroecological Zones | Geographical Features | Livelihood Strategies |
---|---|---|
Plantation zone | Rain forests, mangrove forests, and coastal areas | Rainfed plantations on hilly lands, non-farm activities (civil servants, casual workers, home business such as shops, production of local snacks, and fishery) |
Lowland zone | Flat plains, rain forests, mangrove forests, and coastal areas | Rainfed lowland rice production on flat plains, rainfed plantations on hilly lands, non-farm activities (civil servants, casual workers, home business such as shops, production of local snacks, and fishery) |
Sea zone | Flat plains, rain forests, mangrove forests, and coastal areas | Rainfed lowland rice production on flat plains, rainfed plantations on hilly lands, non-farm activities (civil servants, casual workers, home business such as shops, production of local snacks, and fishery) |
(a) | ||||||
---|---|---|---|---|---|---|
Year | Satellite Sensor | Dataset Provider | Date of Acquisition | Path/Row | Spatial Resolution (Pixel Size; m) | Spectral Resolution (Band) |
1978 | Landsat 3 MSS | USGS | 20 November 1978 ** | 140/51 | 60 | 4, 5, 6, 7 |
Landsat 3 MSS | USGS | 20 November 1978 ** | 140/52 | 60 | 4, 5, 6, 7 | |
Landsat 3 MSS | USGS | 25 December 1978 ** | 139/51 | 60 | 4, 5, 6, 7 | |
Landsat 3 MSS | USGS | 25 December 1978 ** | 139/52 | 60 | 4, 5, 6, 7 | |
1989 | Landsat 5 ETM | USGS | 12 December 1989 * | 131/51 | 30 | 1, 2, 3, 4, 5, 7 |
Landsat 5 ETM | USGS | 12 December 1989 ** | 131/52 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 21 December 1989 * | 130/51 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 21 December 1989 * | 130/52 | 30 | 1, 2, 3, 4, 5, 7 | |
2000 | Landsat 5 ETM | USGS | 03 February 2000 * | 130/51 | 30 | 1, 2, 3, 4, 5, 7 |
Landsat 5 ETM | USGS | 03 February 2000 * | 130/52 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 10 February 2000 * | 131/51 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 10 February 2000 ** | 131/52 | 30 | 1, 2, 3, 4, 5, 7 | |
2011 | Landsat 5 ETM | USGS | 01 February 2011 * | 130/51 | 30 | 1, 2, 3, 4, 5, 7 |
Landsat 5 ETM | USGS | 01 February 2011 * | 130/52 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 08 February 2011 * | 131/51 | 30 | 1, 2, 3, 4, 5, 7 | |
Landsat 5 ETM | USGS | 08 February 2011 ** | 131/52 | 30 | 1, 2, 3, 4, 5, 7 | |
2020 | Landsat 8 OLI/TIRS | USGS | 15 November 2020 * | 131/51 | 30 | 2, 3, 4, 5, 6, 7 |
Landsat 8 OLI/TIRS | USGS | 15 November 2020 ** | 131/52 | 30 | 2, 3, 4, 5, 6, 7 | |
Landsat 8 OLI/TIRS | USGS | 10 December 2020 * | 130/51 | 30 | 2, 3, 4, 5, 6, 7 | |
Landsat 8 OLI/TIRS | USGS | 10 December 2020 * | 130/52 | 30 | 2, 3, 4, 5, 6, 7 | |
(b) | ||||||
Satellite | Sensor | Band | Description of the Band | Wavelength (μm) | ||
Landsat 3 | MSS | Band 4 | G (Green) | 0.5–0.6 | ||
Band 5 | R (Red) | 0.6–0.7 | ||||
Band 6 | NIR (Near Infrared) 1 | 0.7–0.8 | ||||
Band 7 | NIR 2 | 0.8–1.1 | ||||
Landsat 5 | ETM | Band 1 | B (Blue) | 0.45–0.52 | ||
Band 2 | G | 0.52–0.60 | ||||
Band 3 | R | 0.63–0.69 | ||||
Band 4 | NIR | 0.76–0.90 | ||||
Band 5 | SWIR (Shortwave Infrared) 1 | 1.55–1.75 | ||||
Band 7 | SWIR 2 | 2.08–2.35 | ||||
Landsat 8 | OLI/TIRS | Band 2 | B | 0.45–0.51 | ||
Band 3 | G | 0.53–0.59 | ||||
Band 4 | R | 0.64–0.67 | ||||
Band 5 | NIR | 0.85–0.88 | ||||
Band 6 | SWIR 1 | 1.57–1.65 | ||||
Band 7 | SWIR 2 | 2.11–2.29 |
LULC Classes | 1978 | 1989 | 2000 | 2011 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
OA (96.1) | KC (0.96) | OA (97.1) | KC (0.97) | OA (96.6) | KC (0.96) | OA (97.4) | KC (0.97) | OA (97.4) | KC (0.97) | |
UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | |
Water Bodies | 100 | 100 | 100 | 99 | 100 | 99 | 100 | 100 | 100 | 100 |
Paddy Fields | 88 | 100 | 94 | 100 | 91 | 100 | 91 | 100 | 94 | 100 |
Open Forests | 88 | 90 | 92 | 89 | 90 | 88 | 98 | 84 | 95 | 88 |
Closed Forests | 93 | 87 | 93 | 95 | 94 | 91 | 92 | 97 | 91 | 98 |
Mangrove Forests | 96 | 94 | 95 | 97 | 94 | 96 | 96 | 100 | 97 | 94 |
Plantations | 100 | 99 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Settlement Areas | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 99 | 100 | 99 |
Aquaculture Areas | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Others | 100 | 95 | 100 | 94 | 100 | 95 | 100 | 97 | 100 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tun, P.T.; Nguyen, T.T.; Buerkert, A. Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years. Remote Sens. 2023, 15, 1537. https://doi.org/10.3390/rs15061537
Tun PT, Nguyen TT, Buerkert A. Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years. Remote Sensing. 2023; 15(6):1537. https://doi.org/10.3390/rs15061537
Chicago/Turabian StyleTun, Phyu Thaw, Thanh Thi Nguyen, and Andreas Buerkert. 2023. "Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years" Remote Sensing 15, no. 6: 1537. https://doi.org/10.3390/rs15061537
APA StyleTun, P. T., Nguyen, T. T., & Buerkert, A. (2023). Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years. Remote Sensing, 15(6), 1537. https://doi.org/10.3390/rs15061537