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Abstract: We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove,
lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi
Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of
16 natural and human land use classes using both a Random Forest algorithm and a multivariate
Gaussian model while considering scenarios with all natural forest classes grouped into a single intact
or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model
with the partitioning of intact and degraded forest into separate forest cover classes but slightly
decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of
total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area)
and lowland evergreen forest (21.6%). However, while just 27.1% of upland evergreen forest was
classified as degraded (on the basis of canopy cover <80%), 66.0% of mangrove forest and 47.5% of
the region’s biologically-rich lowland evergreen forest were classified as degraded. This information
on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is
critical to effective conservation strategies and land-use planning.

Keywords: remote sensing; forest types; forest classification; Landsat 8 OLI; satellite imagery; wildlife
habitat; tropical forest; mangrove

1. Introduction

The complex geological and bioclimatic history of Southeast Asia has resulted in an exceptionally
rich biodiversity [1] and some of the highest concentrations of endemic species in the world [2].
The floristically-distinct forest types that occur in the region vary in their species assemblages,
vulnerability to habitat conversion or degradation, conservation value, and representation within
protected area networks [3,4]. Forests that are accessible and occur in areas with high human population
densities are especially vulnerable to degradation and deforestation. As a result, the region’s remaining
forest cover predominantly occurs at high elevations or in areas that are difficult to access due to
steep terrain [5]. Lowland evergreen forests have experienced especially high rates of forest loss [6,7].
Similarly, mangrove forests occur exclusively in coastal areas and are undergoing rapid conversion
to agriculture [8]. Due to the unique threats faced by different forest types, conservation strategies
and risk assessments in the region should be based on an accurate understanding of current forest
distributions and knowledge of where forest loss and degradation are taking place.
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Although the extent of forest degradation in some landscapes may be much larger than the extent
of outright forest loss (e.g., [9,10]), forest degradation is more difficult to monitor with remote sensing
techniques than outright deforestation. Various approaches have been applied to the mapping of
forest degradation, such as the analysis of time series data (e.g., [11]), use of canopy cover loss as an
indicator of degradation (e.g., [12–14]), or mapping of secondary degradation indicators such as log
landings and logging roads (e.g., [15]). Assessing forest degradation in continental Southeast Asia is
particularly challenging due to variation among natural forest types in their physical structure and
seasonal patterns of canopy cover that range from evergreen to fully deciduous [5]. This region has
a monsoon climate with a distinct wet season (May–October) that corresponds with elevated vegetation
growth [16]. The dry season (November–March) provides greater availability of cloud-free satellite
imagery at a time when reduced canopy cover may indicate either forest degradation or the presence
of deciduous tree species in their annual leaf-off period. Thus, distinguishing between deciduous
forest and canopy thinning due to degradation is an important challenge in continental Southeast Asia
and it has been suggested that single-date mapping of forest degradation based on canopy cover may
be unreliable without matching data for specific sites in intact condition [5].

However, fairly subtle differences in forest type may be resolvable using medium-resolution
satellite imagery. Recent studies have demonstrated that local floristic differences in tropical forests
can be effectively identified using a combination of medium-resolution multi-spectral (e.g., Landsat)
and topographic data [17–21]. Scaling these approaches to broader landscapes may be problematic
if this results in increased spectral variability within forest classes and reduced ability to distinguish
among them. This may be due to factors such as forest disturbance, topographic shadowing, or
differences among scenes in a mosaicked image [22]. Sometimes these limitations are avoided by
assessments and studies that focus on mapping a single forest type of interest (e.g., [3,23]), yet country-
and regional-level conservation planning often require comprehensive assessments of all forest types
and their associated vulnerability to loss and degradation.

Despite having less than 1% of the world’s population, forest loss in Myanmar represented
16.5% of global forest loss between 2010 and 2015 [24]. Myanmar remains one of the most heavily
forested countries in Southeast Asia, but had an annual deforestation rate of 0.30% between 2002 and
2014, and lost “intact forest” (generally canopy cover <80%) at an annual rate of 0.98% [12]. Although
some forest areas in Myanmar are selectively logged under the Myanmar Selection System, which
sets harvest quotas to sustain long-term timber yields [14], logging concessions in unmanaged natural
forest have far less oversight [25] and contribute to the rapid loss of relatively intact forest, often
from ethnic conflict areas. Furthermore, government policy and land concessions have encouraged
the clearing of forest for agricultural plantations, which has sometimes involved the de-gazetting of
areas within national forest reserves [26]. Much of this forest conversion for commercial agriculture
is occurring in Myanmar’s Tanintharyi Region, where the rapid expansion of oil palm cultivation,
and to a lesser extent rubber, is responsible for ongoing forest loss within the largest remaining
areas of lowland wet evergreen forest in the Sundaic region of continental Southeast Asia [12,27].
These biologically-rich forest ecosystems, along with mangrove forests, are poorly represented in
Myanmar’s protected area system and are priority areas for conservation [28].

The motivation for this study was the challenge of distinguishing forest degradation from spectral
differences among distinct forest types, such as those that occur due to seasonal leaf-on/leaf-off cycles
of deciduous vegetation. We used canopy cover as an indicator of forest degradation (e.g., [12–14]) in
order to map intact and degraded forest extent in Myanmar’s Tanintharyi Region based on single-date
Landsat 8 imagery and topographic data. As a baseline, we evaluated classification accuracy with
two natural forest classes, intact and degraded forest, as well as eight non-forest land use/land
cover classes. We then compared scenarios with intact and degraded forest partitioned into four
ecologically-distinct forest types: mangrove, lowland evergreen forest, upland evergreen forest,
and mixed deciduous forest. This study provides insight into mapping tropical forest degradation
across a range of distinct forest types, while also providing critical information on the current status of
unique forest ecosystems and patterns of human land use in Tanintharyi, Myanmar.
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2. Materials and Methods

2.1. Study Area

Tanintharyi is the southernmost administrative region of Myanmar and covers over 43,000 km2

between the Andaman Sea to the west and Thailand to the east (Figure 1). Topography varies along this
east–west gradient from flat or hilly coastal zones to mountainous areas of up to 2000 m in elevation
along the Thai border. The region experiences a tropical monsoon climate with a distinct wet season,
from May to October, followed by an extended dry season. Although forests in much of the region
are broadleaf evergreen, certain areas contain mixtures or mosaics of evergreen and deciduous tree
species. In monsoon areas of Southeast Asia, leaf drop occurs during the dry season for deciduous
tree species, but can be highly variable among years, species, and locations [29,30]. For this study,
we group forests in Tanintharyi into one of four major ecological types: (1) mangrove forest; (2) lowland
evergreen forest; (3) upland evergreen forest; and (4) mixed deciduous forest.
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Figure 1. Land cover classification for Myanmar’s Tanintharyi Region in 2016 (A); Mangrove
degradation south of the city of Myeik (B); Oil palm plantation development and lowland evergreen
forest in Tanintharyi’s Kawtaung District (C).

In Tanintharyi, long-term conflict between the national government and various non-state armed
groups previously resulted in a fragile security situation that limited the pace of development and
forest loss [26,27]. As a result, the region retains extensive forests in the mountainous areas along the
Thai border and has the largest remaining areas of biologically-rich lowland wet evergreen forest in
the Sundaic region of continental Southeast Asia [6,27]. Concurrent with increased political stability,
the landscape has been experiencing widespread deforestation [28] and rapid expansion of agriculture
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and agroforestry [26,31]. These land-use changes are focused primarily in low-elevation coastal areas,
with remaining forest cover being increasingly concentrated in areas of steep terrain. Tanintharyi
has a network of multi-use forest reserves as well as three protected areas, Lampi National Park,
Moscos Islands Wildlife Sanctuary, and the Tanintharyi Nature Reserve. These areas cover 43.5% of
the region, including extensive upland forests along the Thai border as well as island forests off the
Tanintharyi coast.

2.2. Data and Preprocessing

We used Landsat 8 Operational Land Imager (OLI) data to map 16 land use and land cover classes
for Tanintharyi, Myanmar (Table 1). We collected eight post-monsoon Landsat scenes with a narrow
range of acquisition dates between 15 February and 18 March 2016 (Appendix A). We performed
all image pre-processing and analysis steps using a series of scripts written for the R statistical
software [32], which are available as Supplementary Materials. All Landsat data were first converted
from Digital Numbers (DN) to Top of Atmosphere Reflectance (TOA) and Brightness Temperature
(BT) values using radiometric rescaling coefficients from the Landsat metadata files [33]. We translated
the FMASK algorithm [34,35] into R to perform image calibration, cloud removal and cloud shadow
removal. We then used the C correction method [36] to conduct topographic normalization of Landsat
8 bands 2–7 (30-m resolution) using a 30-m resolution DEM to lessen the effects of topographic
shadowing. Creation of training data for supervised land cover classification was dependent on
the availability of free fine-resolution imagery (Google Earth or Bing Maps) and it was sometimes
unknown which land cover types should occur in each Landsat scene. As a result, we ultimately
created a single landscape-wide mosaic for each Landsat band after performing gamma correction
(e.g., [37]) to reduce scene boundary artifacts by correcting for differences in overall luminance among
scenes. Other data layers used in our analysis included a 30-m digital elevation model (DEM) from
NASA’s Shuttle Radar Topography Mission [38], and a derived topographic position index (TPI) layer
(e.g., [39]) in which the value of each cell represents the difference between the elevation of that cell
and the mean elevation of all cells within the surrounding 1 km × 1 km neighborhood. The training
data for our supervised land cover classification consisted of a 30-m resolution image stack containing
each of the single-band mosaics for Landsat 8 bands 2–7 (blue, green, red, near-infrared, shortwave
infrared 1, and shortwave infrared 2), as well as the DEM and TPI raster layers.

Table 1. Tanintharyi land use and land cover categories.

Category Description

Intact Upland Evergreen Forest Canopy cover ≥80%. Elevation >200 m or on steep terrain at lower elevations.
Canopy remains green year round.

Degraded Upland Evergreen Forest Canopy cover <80%. Elevation >200 m or on steep terrain at lower elevations.
Canopy remains green year round.

Intact Lowland Evergreen Forest Canopy cover ≥80%. Elevation <200 m or on flat or level terrain. Canopy remains
green year round.

Degraded Lowland Evergreen Forest Canopy cover <80%. Elevation <200 m or on flat or level terrain. Canopy remains
green year round.

Intact Mangrove Forest Mangrove cover ≥80%.

Degraded Mangrove Forest Mangrove cover <80%. Evidence of thinning visible as bare ground from above.

Intact Mixed Deciduous Forest Canopy cover ≥80%. Mixture of trees with and without leaves during dry season.

Degraded Mixed Deciduous Forest Canopy cover ≥80%. Mixture of trees with and without leaves during dry season.

Oil Palm Plantation Mature oil palm. Oil palm coverage >50%.

Rubber Plantation Mature rubber plantation. Rubber coverage >50%.

Betal Nut Garden/Plantation Mature betal nut garden, plantation, or planting in forest

Settlement Areas with interspersed to complete coverage of buildings and man-made structures.

Rice Rice

Mudflat Coastal and estuarine mudflats

Bare Ground/Clearing Exposed soil and recent clearings with grassy or low herbaceous vegetation cover

Water Ocean, rivers, lakes, reservoirs, flooded areas.
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2.3. Mapping Approach

We used freely-available fine-resolution imagery (Google Earth or Bing Maps) to create training
data polygons for supervised land cover classification. Satellite imagery available through these
sources comes from a variety of data providers but is generally 65-cm resolution or finer and spans
a range of image acquisition dates. Training data for this study were primarily based on imagery from
2014 to 2016, which was available for much of Tanintharyi. Visual interpretation of fine-resolution
imagery was based on patch size and geometric shape, texture, color, or vegetation phenology in cases
where time series of reference imagery were available. Although forest degradation can occur without
a reduction of canopy cover, intact forest canopies in Tanintharyi are mostly closed [12]. As a result,
we created training data for degraded forest classes in areas where early dry season canopy cover was
less than 80%. Mixed deciduous forest was largely identified based on time series of imagery or prior
knowledge of particular forest areas. Training data for lowland evergreen forest were created only
in areas less than 200 m in elevation that were visually identified as having flat or gently undulating
terrain. This process was done in consultation with field biologists knowledgeable about specific
forest areas in Tanintharyi, and was also facilitated by field visits in March and May 2016. Training
data polygons were manually digitized based on fine-resolution imagery and were subsequently
reviewed using multiband composite rasters of pan-sharpened Landsat 8 imagery (15-m resolution).
Each polygon was compared with both natural color (Landsat 8 bands 4-3-2) and color infrared
(Landsat 8 bands 5-4-3) composite rasters to improve consistency between the training data and
Landsat imagery. The final training dataset consisted of 75 polygons from each target land cover class.

We compared four separate land cover classifications to explore the effectiveness of mapping
intact and degraded forest areas for specific forest types and the corresponding map accuracies.
We conducted supervised classifications using both a Bayesian analysis of a multivariate Gaussian
model and a Random Forest algorithm. These classifications were executed in R [32] using program
JAGS [40,41] and the randomForest package [42], respectively. The multivariate Gaussian model is
parametric classification procedure involving estimation of a mean vector and variance-covariance
matrix based on spectral data from training samples, and is often referred to as the Gaussian Maximum
Likelihood Classifier (e.g., [43]). Random Forest is a machine learning algorithm that is commonly used
in remote sensing for classification of satellite or aerial images [44,45]. Random Forest is an ensemble
decision tree classifier that is flexible with regards to distributional assumptions about the training
data and is generally robust to over-fitting. As a result, this non-parametric classifier is potentially
better suited to identification of target land cover classes that include mixtures of spectral information
(see [44,45] for further details). For each classifier, we compared scenarios with just two natural forest
classes (intact and degraded) to classifications with eight natural forest classes (intact and degraded
for each of four distinct forest types). Each classified image was post-processed with a 3 × 3 majority
filter to smooth isolated pixels that are likely to represent classification error.

The models were trained based on elevation, topographic position, and single-band Landsat
data (for bands 2–7). These predictor variables were extracted from five randomly-selected pixels
within each of the 50 training polygons for each land cover class, so that every target class was trained
with 250 pixels. The remaining 25 training polygons for each class were withheld for an independent
validation of map accuracy. For classifications with just two forest classes, we randomly selected
50 intact forest training polygons and 50 degraded forest polygons from the 200 available across all
four ecological forest types. We also used output from the GMLC model to map pixel-level Bayesian
posterior probabilities, which provide a measure of confidence that each pixel was assigned to the
correct land use or land cover class in the analysis. To visualize broad-scale patterns of classification
uncertainty, we resampled these pixel-level posterior probabilities to the mean for the surrounding
500 m × 500 m neighborhood (Figure 2). As further assessment of classification accuracy, we randomly
selected one reference pixel from each of the 25 training polygons retained as validation data for each
land cover class. Based on these points, we generated a confusion matrix to evaluate the accuracy of
our class assignments for each combination of classifier (GMLC vs. Random Forest) and number of
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forest classes (two vs. eight). We summarize these results as per-class producer’s accuracies (fraction
of reference pixels for a given class that are correctly identified), and per-class user’s accuracies
(fraction of pixels of a given class that are correct in the classified image). Because training data
were evenly split among classes, overall accuracy is equal to the mean per-class producer’s accuracy
for each classification and is not reported separately. We also calculate the kappa coefficient for
each classification, which represents an accuracy metric accounting for agreement due to chance [46].
Kappa coefficients are widely reported in remote sensing studies, though over-reliance on this metric
has been criticized for, among other reasons, potentially overestimating chance agreement and the
limited importance to map users of knowing whether accuracy is due to chance or design [47–49].
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3. Results

3.1. Mapping of Ecologically-Distinct Forest Types

For land cover classifications with just two natural forest classes (intact and degraded), validation
based on withheld training data resulted in kappa coefficients of 0.70 and 0.78 for the GMLC and
Random Forest classifications, respectively. The GMLC classifier had mean per-class user’s and
producer’s accuracies of 74.2% and 73.2% Intact forest, degraded forest, and bare ground/clearing
were frequently misclassified and had the three lowest user’s and producer’s accuracies by class.
Overall, 28.0% of reference points for forest were misidentified as non-forest classes and an additional
16.0% were correctly identified as forest but incorrectly assigned as intact or degraded. The Random
Forest classifier had mean per-class user’s and producer’s accuracies of 79.2% and 78.8%, respectively.
User’s and producer’s accuracies were again low for the intact and degraded forest classes, with 24.0%
of forest reference points being misclassified as non-forest classes versus 16.0% confusion of intact and
degraded forest.

Partitioning forest cover into separate intact and degraded classes for each of four distinct forest
types (mangrove, lowland evergreen, upland evergreen, and mixed deciduous) led to 3.3% and
3.6% increases in mean per-class user’s and producer’s accuracy based on the GMLC classification.
The kappa coefficient for this classification improved from 0.70 to 0.75. Mean per-class producer’s
accuracy for forest classes improved from 56% with just two forest classes to 72.5% with eight target
forest classes. Furthermore, just 4.5% of reference points for forest were misidentified as a non-forest
class, 8.5% were misclassified as a different forest type, and 14.5% were assigned the correct forest type
but misidentified as intact or degraded. With the partitioning of intact and degraded forest into eight
classes, there was a slight decrease in the kappa coefficient for the Random Forest classification, from
0.78 to 0.75. Mean per-class user’s and producer’s accuracies decreased by 1.9% and 2.0%, respectively.
The forest type and intact or degraded status of reference points were correctly predicted 74.0% of
the time. A further 6.0% of reference points for forest were misidentified as non-forest, 8.5% were
misidentified as a different forest type, and 11.5% were assigned the correct forest type but misclassified
as intact or degraded. Overall, the GMLC and Random Forest classifications with eight natural forest
classes had the same kappa coefficients (0.75) and producer’s accuracies (76.8%), with the GMLC
approach having a minimally higher mean per-class user’s accuracy (77.5% vs. 77.3%). All further
results, tables, and figures reported are based on the GMLC classification due to the nearly-identical
accuracy metrics and an apparent tendency to better predict land cover in several parts of the landscape
where fine-resolution data were not available to create training data.

3.2. Extent of Remaining Forest Cover

Intact or degraded forest classes covered 80.7% of Tanintharyi, Myanmar in March 2016 (Figures 1
and 3, Table 2). Upland evergreen forest was the most common forest type (42.3% of total area),
followed by lowland evergreen forest (21.6%), mixed deciduous forest (10.8%), and mangrove forest
(6.0%). The prevalence of forest degradation, or areas showing apparent canopy damage, varied
widely among the four distinct forest types. Just 34.0% of mangrove forest was classified as intact
(Figure 1B), compared to 47.1% of mixed deciduous forest, 52.5% of lowland evergreen forest, and 72.9%
of remaining upland evergreen forest.

The major forest types in Tanintharyi also differ considerably in their representation within the
national forest reserve and protected area systems. Combined, these government reserves encompass
56.2% of remaining intact forest. However, just 12.5% of intact mixed deciduous and 39.9% of intact
mangrove forest fall within protected areas and forest reserves, compared to 60.8% and 62.7% of intact
lowland and upland evergreen forest, respectively.
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Figure 3. Combined extents of intact forest, degraded forest, and non-forest classes for Myanmar’s
Tanintharyi Region.

Table 2. Terrestrial land cover by area in Tanintharyi, Myanmar.

Land Cover Area (km2) Percent of Total

Degraded Mangrove 1604 4.0
Intact Mangrove 826 2.1

Degraded Lowland Evergreen 4141 10.4
Intact Lowland Evergreen 4580 11.5

Degraded Upland Evergreen 4624 11.6
Intact Upland Evergreen 12,456 31.2

Degraded Mixed Deciduous 2295 5.8
Intact Mixed Deciduous 2046 5.1
Bare Ground/Clearing 1529 3.8

Rice 1542 3.9
Oil Palm Plantation 1365 3.4
Rubber Plantation 1275 2.1

Betal Nut Garden/Plantation 821 2.2
Settlement 866 3.0

Total 39,897 100.0
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3.3. Human Land Use

We estimate that rice cultivation areas and mature oil palm, rubber, and betal nut plantations
currently combine to cover 11.5% of Tanintharyi and 16.6% of all land outside protected areas
and forest reserves. Rice cultivation covers 3.9% of the region, but is concentrated in flat, coastal
areas. Commercial oil palm currently represents 3.4% of the landscape and primarily occurs in the
Kawthaung district of southern Tanintharyi where extensive recent forest clearing suggests a continued
expansion into some of the remaining tracts of lowland evergreen forest (Figure 1C). Mature rubber
and betal nut plantations cover a further 2.2% and 2.1% of Tanintharyi, respectively. Areas of young
agroforestry plantation without mature tree cover are believed to be primarily classified as clearing or
degraded forest due to the dominant spectral signature of bare ground or early-successional vegetation.
Given the rapid recent expansion of plantation areas and the large combined extents of bare ground
and degraded forest classes, estimated plantation area in this study is likely highly conservative.

3.4. Accuracy Assessment

Training data for the eight natural forest classes encompassed a broad range of spectral variability
(Figure 4). The overall per-class accuracies of the Tanintharyi land cover map ranged from 44%
to 100% (Table 3). Of the error associated with natural forest classification, 52.7% of misclassified
forest areas were due to confusion of canopy damaged areas and intact forest of the same forest
type. Success distinguishing intact from degraded forest varied considerably among forest types,
with degraded mixed deciduous forest being correctly identified just 44% of the time and most
commonly confused with intact mixed deciduous. Areas of bare ground/clearing also had relatively
low accuracy. New clearing is often a short-lived, transitional class and reference imagery may not
always match the Landsat data used to perform the classification. Young plantation can also have
spectral characteristics that are most similar to bare ground [50,51] or young regrowth in degraded
forest areas. Finally, with the exception of rice cultivation areas, we observed a general tendency
for predicted land cover in human-dominated parts of the landscape to have lower confidence
(Figure 2). Many areas of Tanintharyi are composed of small plots of different land cover types,
such as clearing, degraded forest, small-scale plantation, and areas of traditional shifting cultivation
(i.e., slash-and-burn), and will often have a mixed spectral signature at 30-m resolution.
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Figure 4. Normalized Top of Atmosphere Reflectance (TOA) of training data by forest type.
Points indicate mean values while error bars depict upper and lower quartiles for Landsat 8 bands
3 (green), 5 (near infrared), and 6 (shortwave infrared 1). For each band, normalized reflectance was
calculated by subtracting the mean and dividing by the standard deviation of the training data sample.
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Table 3. Confusion matrix from the Gaussian Maximum Likelihood Classification (GMLC) for 16 land
use/land cover classes. Numbers of correctly classified reference points (withheld training data) are
shown in bold along the main diagonal. Land use/land cover codes are: wa, water; dv, degraded
mangrove; iv, intact mangrove; dl, degraded lowland evergreen forest; il, intact lowland evergreen
forest; du, degraded upland evergreen forest; iu, intact upland evergreen forest; dm, degraded mixed
deciduous forest; im, intact mixed deciduous forest; cl, clearing/bare ground; ri, rice; oi, oil palm; ru,
rubber; be, betal nut; mu, mudflat; se, human settlement.

Reference Points

wa dv iv dl il du iu dm im cl ri oi ru be mu se

wa 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
dv 0 22 4 0 0 0 0 0 0 0 1 0 0 0 0 0
iv 0 1 21 0 0 0 0 0 0 0 0 0 0 0 0 0
dl 0 0 0 18 1 1 0 1 2 2 0 0 0 2 0 0
il 0 0 0 3 20 1 1 1 0 0 0 0 0 0 0 0

du 0 0 0 0 1 14 1 2 1 0 0 0 0 0 0 0
iu 0 0 0 0 2 4 23 1 0 0 0 0 0 0 0 0

dm 0 0 0 0 0 1 0 11 6 4 0 1 0 2 0 0
im 0 0 0 0 0 2 0 9 16 1 0 0 0 0 0 0
cl 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 3
ri 0 1 0 0 0 0 0 0 0 2 21 0 0 0 3 3
oi 0 1 0 1 1 0 0 0 0 0 0 22 2 2 0 0
ru 0 0 0 1 0 0 0 0 0 0 1 0 22 0 0 0
be 0 0 0 1 0 2 0 0 0 0 2 0 0 18 0 0
mu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0
se 0 0 0 1 0 0 0 0 0 3 0 2 1 1 0 19

Producer’s Accuracies:
1.00 0.88 0.84 0.72 0.80 0.56 0.92 0.44 0.64 0.52 0.84 0.88 0.88 0.72 0.88 0.76

User’s Accuracies:
1.00 0.81 0.95 0.67 0.77 0.74 0.77 0.44 0.57 0.81 0.70 0.76 0.92 0.78 1.00 0.70

4. Discussion

4.1. Mapping of Forest Types and Degradation Extent

A key objective of this study was to effectively map forest degradation in Myanmar’s Tanintharyi
Region in spite of spectral differences among forest types and varying levels of disturbance intensity
across the landscape. This is a particular challenge in monsoon areas of Southeast Asia, where variation
can be especially high among natural forest types in their physical structure and seasonal patterns of
canopy cover [5]. Several studies have established that local floristic differences in tropical forest can
be effectively mapped using medium-resolution multi-spectral imagery such as Landsat, typically in
combination with topographic data [17–21]. However, increasing the variability within forest classes
or the amount of spectral overlap between classes represents a considerable challenge to accurate
discrimination of forest types [22]. This is a particular problem for studies that focus on mapping
multiple unique forest types at geographic scales spanning multiple satellite images, having varying
levels of topographic shadowing, or encompassing gradients in climate or forest disturbance [22].

In our study, forest areas spanned eight Landsat scenes that encompassed a considerable range of
latitude, elevation, and climate conditions. In a comparison of GMLC and Random Forest classifications,
we found that in either case there was just a slight increase (GMLC) or decrease (Random Forest) in
overall classification accuracy by partitioning intact and degraded forest classes into separate classes
for each of four ecological forest types. Because classification of remote sensing data primarily depends
on the spectral contrast between classes, it is typically expected that increasing numbers of land cover
classes will result in reduced classification accuracy [52]. Although the spectral difference between
classes may be reduced with expanded classification schemes, inclusion of additional classes can also
lead to increased spectral contrast by reducing the variability within individual classes. Parametric
classifiers may especially likely to realize a net benefit from splitting classes with mixed spectral
signatures into more homogeneous units, as indicated by the improvement in the accuracy of our
GMLC classification by the addition of six additional forest classes. Most importantly, this expanded
classification reduced the overall misidentification of forest reference points as non-forest from 28.0%
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to 4.5% and from 24.0% to 6.0% for the GMLC and Random Forest classifiers, respectively. Our study
ultimately indicates that mapping of forest degradation can be more accurate with additional target
classes representing distinct forest types, likely due to reduced variability within classes. However,
we still found that identification of degraded areas within mixed deciduous forest had much lower
accuracy than for other forest types.

A number of previous remote sensing studies have used multi-date satellite imagery to assess forest
cover change dynamics in Myanmar. These include studies at global [53], national [6,12,24,54,55], and
sub-national scales [14,23,55–57]. Countrywide studies have frequently focused on estimating overall rates
of forest loss, without quantifying the unique threats faced by particular forest types (e.g., [6,12,24,58]).
However, Wang and Myint [54] estimated nationwide deforestation rates (2001–2010) for each of
five unique forest types and found that mangrove and deciduous forest had experienced deforestation
rates that were 2–5 times the national average. Bhagwat et al. [12] did not distinguish specific
forest types, but provided rates of deforestation, forest degradation, and conversion to agroforestry
plantations. Forest loss data from Hansen et al. [53] have also been previously used to highlight the loss
of lowland evergreen forest in Tanintharyi, Myanmar [27]. Although our study represents a single-date
land cover map for Tanintharyi, this detailed classification provides insight into the local drivers
of forest loss identified in previous studies. For instance, 42% of forest gain (2002–2014) according to
Hansen et al. [53] was identified as agroforestry plantation in our 2016 land cover (oil palm, rubber, betal
nut) and a further 38% was assigned to a degraded forest class. Just 6% of areas classified as deforested
from 2002 to 2014 were classified as intact forest in our dataset. Conversely, less than 1% of intact
forest pixels in our dataset were deforested between 2002 and 2014 according to Hansen et al. [53],
suggesting a general agreement between the two datasets.

4.2. Current Status of Tanintharyi’s Major Forest Ecosystems

We found that Myanmar’s Tanintharyi region remains predominantly forested, with large
contiguous expanses of upland evergreen and mixed deciduous forest in the Dawna and Tenasserim
Mountains along the Myanmar-Thai border. Although these large forested areas were still primarily
intact, expanded forest degradation and plantation development were apparent along several road
corridors connecting Myanmar and Thailand that may threaten wildlife habitat connectivity. Such road
developments may also be a precursor to deforestation because they increase access and reduce the
perceived conservation value of an area [59].

Our study also highlights the limited extent of remaining intact lowland evergreen forest and
the highly-degraded nature of Tanintharyi’s mangroves. Forests in lowland or coastal areas have
experienced especially high rates of forest loss throughout Southeast Asia due to their greater
accessibility and proximity to areas of higher human population density [6,7,27]. Mangrove forests are
found in the inter-tidal zone in tropical and sub-tropical areas, harboring unique biodiversity while
providing significant ecosystem services such as coastal protection, erosion control, enhanced fisheries,
carbon sequestration and fuel wood [60]. However, mangroves are one of the least protected habitat
types in Myanmar [28] and the country has the highest rate of mangrove loss in Southeast Asia [8].
Recent estimates for nationwide mangrove deforestation rates vary considerably, but indicate that
mangrove loss is occurring much more rapidly than loss of other forest types [8,54]. In the current
study, we estimated the total mangrove area in Tanintharyi as 2430 km2, with 66.0% of remaining
mangrove extent being in degraded condition (Table 2).

We also found that the current distribution of intact lowland evergreen forest covers just 11.4%
of Tanintharyi while oil palm cultivation continues to replace and fragment many remaining areas.
In spite of the low predicted yields for oil palm in Tanintharyi [27,61], large-scale concessions awarded
for oil palm plantations totaled 1.9 million acres by 2013 [26]. There have also been reports that oil
palm development has been motivated or reinforced by logging interests (e.g., [26]), and our land cover
classification indicates that extensive patches of lowland forest have been cleared in areas where oil
palm has only been successfully established along narrow roadside strips (Figure 1C). A recent study
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estimated that 23% of total land area in Tanintharyi is now agroforestry plantation [31]. Although this
total differs considerably from the total areas of mature oil palm, rubber, and betal nut cultivation
reported in our study (11.5%), we identified a further 3.9% of the landscape as recent clearing and
30% as degraded forest, which may include young plantation with early-successional vegetation.
These rapid changes occurring in Tanintharyi highlight the urgent need for accurate land use data and
rigorous spatial planning to support conservation efforts.

5. Conclusions

Our study was conducted with the overall goal of mapping forest extent and identifying areas of
forest degradation across a number of structurally- and ecologically-distinct forest types in Tanintharyi,
Myanmar. We found that discrimination among forest types was possible with little or no loss of overall
classification accuracy while greatly increasing the relevance of the map for purposes of conservation
and land use planning. Furthermore, we provide current land use data for a rapidly-developing
region of Myanmar that is home to some of the country’s largest remaining areas of intact forest.
The Myanmar government has a target of formally designating 10% of the country’s area for its
Protected Area System [28]. Mangrove and lowland evergreen forests represent globally-significant
ecosystems, yet both are currently under-represented in the country’s Protected Area System [28].
Our study highlights the threats faced by these unique forest types as a result of rapid development
and surrounding land use conversion.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/11/882/s1.
Supplementary materials include R code for Landsat pre-processing and GMLC classification methods described
in the manuscript.
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Appendix A

Table A1. Landsat scenes and tiles used in the analysis.

Landsat Scene Details

Tile Date Landsat 8 Identifier

129_52 11 March 2016 LC81290522016071
130_50 15 February 2016 LC81300502016046
130_51 15 February 2016 LC81300512016046
130_52 18 March 2016 LC81300522016078
130_53 18 March 2016 LC81300532016078
131_50 9 March 2016 LC81310502016069
131_51 9 March 2016 LC81310512016069
131_52 9 March 2016 LC81310522016069
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