Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results
Abstract
:1. Introduction
2. Instrument—StreamLine XR Doppler Wind Lidar
3. Processing of Doppler Wind Lidar Data
- Wind components: Based on the calibrated VAD files, the wind components (i.e., wind speed and wind direction) are calculated.
- Wind shear: The wind components are used to determine the wind shear every 3 min and 30 min.
- Statistics: Vertical calibrated data (output step 1) are used to extract the mean, standard deviation, variance, skewness and kurtosis for radial velocity. For attenuated backscatter and signal the mean and variance are computed. Associated errors are also provided. The statistics are performed over 3 min, 30 min, and 60 min.
- Turbulence: The determined statistics are next used to calculate the dissipation rate of the turbulent kinetic energy TKE [35] at 3 min, 30 min, and 60 min.
- Clouds: The statistics from step 4 are also used to determine the cloud base height, cloud base velocity, and to provide the cloud mask with the temporal resolution of the input file.
- Planetary Boundary Layer: The PBL classification is based on the statistics (output from step 4), turbulence (output from step 5), and wind shear (output from step 3) files at 3 min temporal resolution. The main output variables are PBL classification, turbulence coupling, and aerosol layer mask. The PBL classification consists in eight classes: No signal, Non-turbulent, Convective mixing, Wind shear, Intermittent, In cloud, Cloud-driven and Precipitation. According to [15], the classification scheme requires as input data the attenuated backscatter coefficient, vertical speed skewness, dissipation rate of TKE (), vertical profiles of horizontal wind, and vector wind shear (see also Figure 2). An attenuated backscatter coefficient () greater than 10−5 m sr−1 is associated with clouds resulting in the In Cloud category. For the other categories, is lower than than 10−5 m−1sr−1. Next, if is lower than 10−5 m2s−3 the flow is considered non-turbulent. For small values of (<10−4 m−1sr−1) and in the case in which skewness is negative starting just below the cloud, the PBL turbulent mixing source is Cloud-Driven. If the skewness is positive, unstable near the surface (daytime), and it is surface connected then the turbulence mixing source is Convective. If it is not surface connected then the turbulence mixing is categorised as Intermittent. When it is not unstable near the surface (nighttime) and the wind shear is greater than 0.03 s−1, the category is Wind Shear. Otherwise, the category is Intermittent. The turbulence can be Surface Connected, Cloud-driven or Unconnected. The range gates that are classified as turbulent but are unconnected to surface or clouds during daytime, and also are not related to wind shear during night-time, are labelled as Intermittent. In this case, the turbulence is assumed to arise from other intermittent sources [16]. The corresponding decision tree scheme to determine the PBL classification is shown in Figure 2b.
- Covariance: The statistics from step 4 are used to calculates the covariance between the attenuated backscatter coefficient and vertical speed at 3 min temporal resolution. A window of 90 min and six range bins are used to estimate the covariance, standard errors, and confidence intervals.
4. ERA5 Reanalysis Model
5. Results
5.1. Wind Speed and Direction
5.2. PBL Classification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- WMO. World Meteorological Organization, Essential Climate Variables. Available online: https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables (accessed on 16 November 2022).
- Buzdugan, L.; Ștefan, S. A comparative study of sodar, lidar wind measurements and aircraft derived wind observations. Rom. J. Phys. 2020, 65, 810. [Google Scholar]
- Urlea, A.D.; Barbu, N.; Andrei, S.; Stefan, S. Simulation of Vesuvius volcanic ash hazards within Romanian airspace using the Hybrid Single-Particle Lagrangian Integrated Trajectory Volcanic Ash numerical model. Meteorol. Appl. 2021, 28, e2021. [Google Scholar] [CrossRef]
- Finn, T.S.; Geppert, G.; Ament, F. Towards assimilation of wind profile observations in the atmospheric boundary layer with a sub-kilometre-scale ensemble data assimilation system. Tellus A Dyn. Meteorol. Oceanogr. 2020, 72, 1–14. [Google Scholar] [CrossRef]
- Liu, D.; Huang, C.; Feng, J. Influence of Assimilating Wind Profiling Radar Observations in Distinct Dynamic Instability Regions on the Analysis and Forecast of an Extreme Rainstorm Event in Southern China. Remote Sens. 2022, 14, 3478. [Google Scholar] [CrossRef]
- Yim, S.H.L. Development of a 3D Real-Time Atmospheric Monitoring System (3DREAMS) Using Doppler LiDARs and Applications for Long-Term Analysis and Hot-and-Polluted Episodes. Remote Sens. 2020, 12, 1036. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Wu, Y.; Shu, Z.; Su, L.; Tang, D.; Yang, Y.; Dong, J.; Yu, S.; Zhang, Z.; Xia, H. Real-Time Synchronous 3-D Detection of Air Pollution and Wind Using a Solo Coherent Doppler Wind Lidar. Remote Sens. 2022, 14, 2809. [Google Scholar] [CrossRef]
- Frehlich, R. Scanning Doppler Lidar for Input into Short-Term Wind Power Forecasts. J. Atmos. Ocean. Technol. 2013, 30, 230–244. [Google Scholar] [CrossRef]
- Pichault, M.; Vincent, C.; Skidmore, G.; Monty, J. Short-Term Wind Power Forecasting at the Wind Farm Scale Using Long-Range Doppler LiDAR. Energies 2021, 14, 2663. [Google Scholar] [CrossRef]
- Schween, J.; Hirsikko, A.; Löhnert, U.; Crewell, S. Mixing layer height retrieval with ceilometer and Doppler lidar: From case studies to long-term assessment. Atmos. Meas. Tech. Discuss. 2014, 7, 3685–3704. [Google Scholar] [CrossRef] [Green Version]
- Tuononen, M.; O’Connor, E.J.; Sinclair, V.A.; Vakkari, V. Low-Level Jets over Utö, Finland, Based on Doppler Lidar Observations. J. Appl. Meteorol. Climatol. 2017, 56, 2577–2594. [Google Scholar] [CrossRef]
- Tsiringakis, A.; Theeuwes, N.; Barlow, J.; Steeneveld, G.J. Interactions Between the Nocturnal Low-Level Jets and the Urban Boundary Layer: A Case Study over London. Bound. -Layer Meteorol. 2022, 183, 249–272. [Google Scholar] [CrossRef]
- Banakh, V.A.; Smalikho, I.N. Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer. Remote Sens. 2018, 10, 1219. [Google Scholar] [CrossRef] [Green Version]
- Harvey, N.; Hogan, R.; Dacre, H. A method to diagnose boundary-layer type using Doppler lidar. Q. J. R. Meteorol. Soc. 2013, 139, 1681–1693. [Google Scholar] [CrossRef]
- Manninen, A.; Marke, T.; Tuononen, M.; O’Connor, E. Atmospheric Boundary Layer Classification With Doppler Lidar. J. Geophys. Res. Atmos. 2018, 123, 8172–8189. [Google Scholar] [CrossRef]
- Ortiz Amezcua, P.; Martínez-Herrera, A.; Manninen, A.; Pentikäinen, P.; O’Connor, E.; Guerrero-Rascado, J.; Arboledas, L. Wind and Turbulence Statistics in the Urban Boundary Layer over a Mountain–Valley System in Granada, Spain. Remote Sens. 2022, 14, 2321. [Google Scholar] [CrossRef]
- Manninen, A. HALO Lidar Toolbox. Available online: https://github.com/manninenaj/HALO_lidar_toolbox (accessed on 1 February 2023).
- Ortiz-Amezcua, P.; Andújar-Maqueda, J.; Manninen, A.J.; Pentikäinen, P.; O’Connor, E.J.; Stachlewska, I.S.; de Arruda Moreira, G.; Benavent-Oltra, J.A.; Casquero-Vera, J.A.; Poczta, P.; et al. Dynamics of the Atmospheric Boundary Layer over two middle-latitude rural sites with Doppler lidar. Atmos. Res. 2022, 280, 106434. [Google Scholar] [CrossRef]
- Livio, B.; Nicolae, D.; Nemuc, A.; Talianu, C.; Derognat, C. Retrieval of the boundary layer height from active and passive remote sensors. Comparison with a NWP model. Acta Geophys. 2014, 62, 276–289. [Google Scholar] [CrossRef]
- Timofte, A.; Belegante, L.; Cazacu, M.; Albina, B.; Talianu, C.; Gurlui, S. Study of planetary boundary layer height from LIDAR measurements and ALARO model. J. Optoelectron. Adv. Mater. 2015, 17, 911–917. [Google Scholar]
- Shangguan, M.; Qiu, J.; Yuan, J.; Shu, Z.; Zhou, L.; Xia, H. Doppler Wind Lidar From UV to NIR: A Review With Case Study Examples. Front Remote Sens. 2022, 2, 59. [Google Scholar] [CrossRef]
- Pearson, G.; Davies, F.; Collier, C. An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer. J. Atmos. Ocean. Technol. 2009, 26, 240–250. [Google Scholar] [CrossRef]
- Pîrloagă, R.; Ene, D.; Boldeanu, M.; Antonescu, B.; O’Connor, E.J.; Ştefan, S. Ground-Based Measurements of Cloud Properties at the Bucharest–Măgurele Cloudnet Station: First Results. Atmosphere 2022, 13, 1445. [Google Scholar] [CrossRef]
- Andrei, S.; Toanca, F.; Dandocsi, A.; Belegante, L.; Nemuc, A.; Marmureanu, L.; Vulturescu, V.; Florescu, G.; Nicolae, D. Assessment of cloud particle types in a deep convective environment using active remote sensing—A case study. J. Optoelectron. Adv. Mater. 2017, 19, 610–616. [Google Scholar]
- Nicolae, D.; Nemuc, A.; Müller, D.; Talianu, C.; Vasilescu, J.; Livio, B.; Kolgotin, A. Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry. J. Geophys. Res. Atmos. 2013, 118, 1–10. [Google Scholar] [CrossRef]
- Adam, M.; Nicolae, D.; Stachlewska, I.; Papayannis, A.; Balis, D. Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology. Atmos. Chem. Phys. 2020, 20, 13905–13927. [Google Scholar] [CrossRef]
- Nicolae, V.; Talianu, C.; Andrei, S.; Antonescu, B.; Ene, D.; Nicolae, D.; Dandocsi, A.; Toader, V.; Stefan, S.; Savu, T.; et al. Multiyear Typology of Long-Range Transported Aerosols over Europe. Atmosphere 2019, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Fragkos, K.; Antonescu, B.; Giles, D.M.; Ene, D.; Boldeanu, M.; Efstathiou, G.A.; Belegante, L.; Nicolae, D. Assessment of the total precipitable water from a sun photometer, microwave radiometer and radiosondes at a continental site in southeastern Europe. Atmos. Meas. Tech. 2019, 12, 1979–1997. [Google Scholar] [CrossRef] [Green Version]
- Merlaud, A.; Livio, B.; Constantin, D.; den Hoed, M.; Meier, A.; Allaart, M.; Ardelean, M.; Arseni, M.; Bösch, T.; Brenot, H.; et al. Satellite validation strategy assessments based on the AROMAT campaigns. Atmos. Meas. Tech. 2020, 13, 5513–5535. [Google Scholar] [CrossRef]
- Päschke, E.; Leinweber, R.; Lehmann, V. An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial. Atmos. Meas. Tech. 2015, 8, 2251–2266. [Google Scholar] [CrossRef] [Green Version]
- Vakkari, V.; Manninen, A.; O’Connor, E.; Schween, J.; Zyl, P.; Marinou, E. A novel post-processing algorithm for Halo Doppler lidars. Atmos. Meas. Tech. 2019, 12, 839–852. [Google Scholar] [CrossRef] [Green Version]
- Steinheuer, J.; Detring, C.; Beyrich, F.; Löhnert, U.; Friederichs, P.; Fiedler, S. A new scanning scheme and flexible retrieval for mean winds and gusts from Doppler lidar measurements. Atmos. Meas. Tech. 2022, 15, 3243–3260. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. QGIS Association. Available online: http://www.qgis.org (accessed on 1 August 2022).
- Manninen, A.J.; O’Connor, E.J.; Vakkari, V.; Petäjä, T. A generalised background correction algorithm for a Halo Doppler lidar and its application to data from Finland. Atmos. Meas. Tech. 2016, 9, 817–827. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, E.; Illingworth, A.; Brooks, I.; Westbrook, C.; Hogan, R.; Davies, F.; Brooks, B. A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements. J. Atmos. Ocean. Technol. 2010, 27, 1652–1664. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 11 January 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1959 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview (accessed on 11 January 2023).
- Andrei, S.; Andrei, M.; Hustiu, M.; Cheval, S.; Antonescu, B. Tornadoes in Romania—From Forecasting and Warning to Understanding Public’s Response and Expectations. Atmosphere 2020, 11, 966. [Google Scholar] [CrossRef]
- Kotsias, G.; Lolis, C.; Hatzianastassiou, N.; Bakas, N.; Lionello, P.; Bartzokas, A. Objective climatology and classification of the Mediterranean cyclones based on the ERA5 data set and the use of the results for the definition of seasons. Theor. Appl. Climatol. 2023, 1–17. [Google Scholar] [CrossRef]
- Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E.R.; Reuder, J.; Vilá-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; et al. The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys. 2014, 14, 10931–10960. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pîrloagă, R.; Adam, M.; Antonescu, B.; Andrei, S.; Ştefan, S. Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results. Remote Sens. 2023, 15, 1514. https://doi.org/10.3390/rs15061514
Pîrloagă R, Adam M, Antonescu B, Andrei S, Ştefan S. Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results. Remote Sensing. 2023; 15(6):1514. https://doi.org/10.3390/rs15061514
Chicago/Turabian StylePîrloagă, Răzvan, Mariana Adam, Bogdan Antonescu, Simona Andrei, and Sabina Ştefan. 2023. "Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results" Remote Sensing 15, no. 6: 1514. https://doi.org/10.3390/rs15061514
APA StylePîrloagă, R., Adam, M., Antonescu, B., Andrei, S., & Ştefan, S. (2023). Ground-Based Measurements of Wind and Turbulence at Bucharest–Măgurele: First Results. Remote Sensing, 15(6), 1514. https://doi.org/10.3390/rs15061514