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Abstract: Heatwaves and air pollution are serious environmental problems that adversely affect
human health. While related studies have typically employed ground-level data, the long-term
and episodic characteristics of meteorology and air quality at higher altitudes have yet to be fully
understood. This study developed a 3-Dimensional Real-timE Atmospheric Monitoring System
(3DREAMS) to measure and analyze the vertical profiles of horizontal wind speed and direction,
vertical wind velocity as well as aerosol backscatter. The system was applied to Hong Kong, a highly
dense city with complex topography, during each season and including hot-and-polluted episodes
(HPEs) in 2019. The results reveal that the high spatial wind variability and wind characteristics
in the lower atmosphere in Hong Kong can extend upwards by up to 0.66 km, thus highlighting
the importance of mountains for the wind environment in the city. Both upslope and downslope
winds were observed at one site, whereas downward air motions predominated at another site.
The high temperature and high concentration of fine particulate matter during HPEs were caused
by a significant reduction in both horizontal and vertical wind speeds that established conditions
favorable for heat and air pollutant accumulation, and by the prevailing westerly wind promoting
transboundary air pollution. The findings of this study are anticipated to provide valuable insight for
weather forecasting and air quality studies. The 3DREAMS will be further developed to monitor
upper atmosphere wind and air quality over the Greater Bay Area of China.

Keywords: Doppler LiDAR; spatial wind variability; air quality

1. Introduction

Heatwaves and air pollution are major environmental problems [1–4] that adversely affect human
health [5–19]. Despite the substantial burdens on human health, the present understanding of such
weather and air quality problems remains limited by insufficient data. In particular, data concerning
the wind and air quality in the upper atmosphere are required for data analyses and modeling.
This absence of data limits research into heatwaves and air pollution.

Extremely high temperatures and air pollution may occur simultaneously because of their shared
atmospheric driving conditions. For this study, an event featuring extremely high temperatures and air
pollution was defined as a hot-and-polluted episode (HPE). The synergy between high temperatures
and air pollution can result in serious public health burdens. Lee et al. [20] investigated a period
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of abnormally high temperatures and air pollution in the United Kingdom. They determined that
the regional entrainment of air from the upper atmosphere caused early morning increases in ozone
during the episode and increased biogenic emissions under high temperatures. Stedman [21] reported
that this increase in ozone and particulates caused more than 400 and 700 additional mortalities in
England and Wales, respectively. Therefore, a more comprehensive understanding of the formation
mechanism of such episodes is required.

In addition to local emissions, transboundary air pollution (TAP) is a major contributor to serious
air pollution [14,22]. For example, studies have reported the severe TAP in the Greater Bay Area
of China [23–27] and the resultant health impacts [10,28]. However, the understanding of upper
atmosphere TAP remains limited. To mitigate this limitation and provide forecasting of TAP and
HPEs, a monitoring system is required to collect extensive data of atmospheric variables from the
upper atmosphere.

Conventional measurements have focused on ground-level air quality. Since 2013, China has
been releasing hourly ground-level air pollutant data covering the entire country. Previous studies
have intensively investigated ground-level air quality by using surface monitoring networks [29–32]
or satellite-retrieval approaches [33]. One previous study attempted to retrieve vertical structures of
aerosol from various satellite observations [34]. Nevertheless, air quality at higher altitudes and the
meteorological driving conditions have yet to be fully understood. Some studies have employed upper
air sounding data to investigate the meteorology at various altitudes [35,36]. However, such data
are typically measured only two to three times per day because of the high cost of data collection.
In addition, upper air sounding data are collected using a helium balloon that carries devices for
meteorological measurement. Therefore, the measurement locations are dependent on the horizontal
and vertical wind velocities at various altitudes. Although sounding data provide a valuable data set
for upper atmosphere meteorology, methodological characteristics prevent the colocation and high
time resolution required for conducting air quality studies.

To overcome data availability problems, Light Detection and Ranging (LiDAR) can be used
for remote atmospheric sensing [37]. For example, an intercomparison study took place at Mace
Head, Ireland [38] where one LiDAR and two co-located ceilometers were validated against the
boundary-layer height derived from radiosoundings. As preparation for the European Space Agency
ADM Mission [39], an intercomparison campaign that held in southern France showed the feasibility of
the direct detection Dopple wind LiDAR technique to retrieve the horizontal wind speed atmospheric
profile. A single Doppler LiDAR unit can perform wind profiling and air quality monitoring [40–42].
For example, Hong Kong International Airport applied Doppler Lidar to monitor wind shear near
the airport [43–45]. The laser beam of their lidar points toward the departure and approach runways.
Their application in Dec 2005 captured ~76% of reported wind shear events [46]. Another study applied
Doppler LiDAR for evaluating offshore wind characteristics for wind energy [47]. A previous study
assessed internal boundary layer structure in Hong Kong under sea-breeze conditions. The authors
compared their simulated internal boundary layer with that derived from Doppler LiDAR data.
This shows the importance of LiDAR for model developments [48]. Doppler LiDAR was also used
for air quality research. A study applied Doppler LiDAR to investigate the characteristics of heavy
particular matter pollution [49]. These studies have shown the capabilities of Doppler LiDAR for
meteorological and air quality studies.

For cities with considerable spatial and temporal variations in wind, a single LiDAR unit may be
insufficient to provide a complete description of complex atmospheric conditions. Previous studies
have reported substantial spatial wind variability [50] and TAP [25,26] in Hong Kong. To improve
understanding of the wind environment and its influence on air quality in this highly dense city,
a 3-Dimensional (3D) Real-timE Atmospheric Monitoring System (3DREAMS) was developed in the
present study. This system can be used for air pollution studies with high spatial wind variability or
TAP, especially those in Hong Kong as well as in the Greater Bay Area to investigate the interactions
between cities in the region.
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The aim of this study was to develop the 3DREAMS using more than one Doppler LiDAR unit.
The method is described in Section 2. Section 3 presents the results of comparison between the LiDAR
data and upper air sounding data as well as those of the analyses for annual and episodic wind profiles.
Conclusions are provided in Section 4.

2. Materials and Methods

Two 1.5-µm Doppler LiDAR units (Halo Photonics Stream Line Scanning Doppler LiDAR system)
were employed for the development of the first stage of the 3DREAMS. The One LiDAR unit was
installed at the Physical Geography Experimental Station of the Chinese University of Hong Kong
(CUHK), and the other unit was installed at the Hong Kong Observatory weather station: King’s
Park (KP). The locations of the two LiDAR units are shown in Figure 1. The CUHK site is located
in northeastern Hong Kong and has an elevation of 5 m above sea level. This site is surrounded by
mountains, including Ma On Shan (≈700 m), Lion Rock (≈500 m), Kam Shan (≈370 m), and Tai Mo
Shan (≈957 m), as shown in Figure 1. The KP site is located in the downtown area of Hong Kong and
has an elevation of 65 m above sea level.
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Figure 1. Locations of the two LiDAR sites (CUHK and KP), topography near the CUHK site,
and schematic of the upslope and downslope winds. The arrows refer to wind direction. The arrow
colors refer to altitude: orange: lower altitude; purple: higher altitude. This CUHK site is surrounded
by mountains, including Ma On Shan (≈700 m), Lion Rock (≈500 m), Kam Shan (≈370 m), and Tai Mo
Shan (≈957 m). The figure was built on a map obtained from Google Earth, earth.google.com/web/.

The LiDAR units were configured to retrieve aerosol backscatter and wind profiles in the boundary
layer up to approximately 3 km above ground level. The principle of the Doppler LiDARs is that
laser pulses are emitted by a transmitter and the reflected signals scattered by particles are received
by a receiver which is built with the transmitter in the same unit. Particles, which are transported by
horizontal wind, induce a Doppler shift as reflected in backscattered light signals. Through measuring
the line-of-sight Doppler wind values, the optical heterodyning in the receiver determines the horizontal
wind vector.

This study employed the both stare and velocity-azimuth display (VAD) scanning methods to
measure horizontal wind information. Figure 2 depicts the schematic diagram of the stare and VAD
scanning methods. The stare scan refers to a scanning using a continuous vertically pointing laser
beam with Φ = 0◦ and θ = 90◦. The stare scan was configured to operate at height and temporal

earth.google.com/web/
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resolutions of 30 m and 1 s, respectively. For the VAD scan, the LiDAR units were set to have six
azimuthal positions at a constant interval of an azimuth angle α = 60◦ with a constant evaluation angle
of θ = 75◦ (Φ = 15◦ with respect to the zenith) at a 10-min interval. For quality control, the data with a
signal-to-noise ratio less than −20 dB were removed.
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Figure 2. The schematic diagram of both stare and velocity-azimuth display (VAD) scanning methods.
The number of bean directions for a VAD scan was 6. The Doppler LiDAR laser beam pointed upward
with a constant elevation angle θ and a constant angle Φ with respect to the vertical Z. The laser beam
rotated around the vertical Z with a constant interval of an azimuth angle α.

Before their operations, the two LiDAR units were calibrated by the LiDAR manufacturer and
validated using a colocation comparison test. The colocation comparison results confirmed consistency
between the LiDAR units with a 95% confidence interval, thus indicating an acceptable calibration.
Regular maintenance checks were conducted during operation. The LiDAR windows were cleaned
hourly through automatic wiping and weekly with an optical cleaning solution. In addition, horizontal
leveling checks were conducted weekly to correct for any settling, which can partly affect beam-pointing
accuracy. The precision of the leveling was within ±1◦. The literature has reported the limitation of
LiDAR performance in complex terrain [51–53]. The LiDARs’ were configured and checked to make
sure surrounding mountains would not significantly affect the LiDARs’ performance, which could be
further confirmed by a comparison between LiDAR data and available upper air sounding data at the
same site. The comparison results are shown in Section 3.1.

Analyses in this study were conducted using data collected during the spring, summer, fall,
and winter of 2019, which were defined as February–April, May–August, September–October,
and November–January, respectively. The annual data availability for the CUHK and KP sites
was 94% and 82%, respectively.

The annual mean vertical profiles of horizontal wind speed and direction and vertical wind
velocity were investigated, and the vertical profiles during HPEs were analyzed. HPEs were defined
by a temperature of ≥28.2 ◦C [54] and more than 50% of air quality stations reporting a concentration
of fine particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) higher than or equal to the
median of the 90th percentile of daily PM2.5 of all stations for the year (33.2 µg/m3). The previous
study [54] reported a statistically significant increase in premature mortality risk for an average 1 ◦C
increase in daily average temperature above 28.2 ◦C. Overall, nine HPEs were identified during 2019.
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Information concerning these HPEs is provided in Table 1. The PM2.5 concentration data at 16 air
quality monitoring stations were obtained from the Hong Kong Environmental Protection Department
(http://www.aqhi.gov.hk/en.html). The temperature and surface wind, and the upper air sounding
data at the KP weather station (latitude: 22◦18′43′′; longitude: 114◦10′22′′) were obtained from the
Hong Kong Observatory (https://www.hko.gov.hk/en/cis/stn.htm).

Table 1. Nine identified HPEs during 2019 with the mean daily PM2.5 concentration (µg/m3) at both
general and roadside stations and daily mean temperature (◦C).

HPE # Month Day Mean of daily PM2.5 Concentration
at General Stations (µg/m3)

Mean of Daily PM2.5 Concentration
at Roadside Stations (µg/m3) Daily Mean Temperature (◦C)

1 7 17 31.9 38.6 30.3
2 7 18 43.5 54.8 31.0
3 8 9 32.2 38.1 31.0
4 8 24 45.4 61.9 30.7
5 9 29 44.5 51.8 28.3
6 9 30 60.5 79.3 29.9
7 10 1 48.1 52.7 29.9
8 10 2 36.5 41.8 29.0
9 10 11 31.3 38.0 28.3

3. Results

3.1. Comparison with Upper Air Sounding Data

LiDAR data were compared with the available upper air sounding data located at the same site.
Figure 3 shows that the LiDAR units captured the general vertical profiles of horizontal wind speed
and direction. Differences at heights less than 0.50 km were negligible, whereas those for heights
greater than 0.50 km were more substantial. As discussed in the methods section, the measurement
locations of the upper air sounding data varied with the wind velocities at the various measurement
altitudes, possibly resulting in different measurement locations for the two data sources. The percentage
difference between the averaged horizontal wind speeds of the two data sources for heights less
than 1.00 km was less than 10%, which indicates sufficient agreement between LiDAR and upper air
sounding data.
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Figure 3. (a) Comparison of horizontal wind speed (m/s) according to KP LiDAR data (red cross) and
upper air sounding data (blue circles) over a 4-day period (1 June 2019, 00:00 UTC to 4 June 2019,
12:00 UTC). (b) Comparison of horizontal wind direction according to LiDAR data (red cross) and
upper air sounding data (blue circles) over a 4-day period (1 June 2019, 00:00 UTC to 4 June 2019,
12:00 UTC).

http://www.aqhi.gov.hk/en.html
https://www.hko.gov.hk/en/cis/stn.htm
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Figure 4c depicts the seasonal vertical profiles of horizontal wind speed based on the LiDAR
measurements at the KP site, whereas Figure 4d shows the seasonal vertical profiles of horizontal wind
speed averaged from the upper air sounding data throughout the entire year. The results show a high
agreement between the profiles, despite the fact that the time resolution of the two data was different.
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Figure 4. (a) Annual (black) and HPE (red) vertical profiles of horizontal wind speed (m/s) at CUHK
(solid) and KP (dashed) sites. Seasonal vertical profiles at (b) CUHK and (c) KP derived from LiDAR
data. (d) Seasonal and (e) annual vertical profiles of horizontal wind speed (m/s) based on the upper
air sounding data collected at 08:00 (HKT) and 20:00 (HKT) every day. For (b–d): spring (black),
summer (red), fall (blue), and winter (magenta). For (e): 08:00 (HKT) (blue) and 20:00 (HKT) (red).

3.2. Horizontal Wind Speed

3.2.1. Annual and Seasonal Vertical Profiles

Figure 4a presents the annual vertical profiles of horizontal wind speed at the CUHK and KP sites.
The results reveal the horizontal wind speed was higher at KP than at CUHK. The KP site is located in
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an urban area, whereas the CUHK site is located in a suburban area. The lower horizontal wind speed
at the CUHK site may be attributable to the complex topography near the site [50].

Figure 4b,c present the seasonal vertical profiles of horizontal wind speed. At the CUHK site,
the mean wind speed for heights less than 1.00 km was higher in summer (6.4 m/s) than in other
seasons (5.4, 4.6, and 4.6 m/s for spring, fall, and winter, respectively). For heights less than 0.42 km,
the wind speeds in spring and fall were similar, whereas, for height between 0.42 km to 1.00 km,
the wind speed in spring was clearly higher than that in fall. For heights of 1.60 to 2.00 km, the wind
speeds in spring and winter were higher than those in summer and fall.

Similarly, at the KP site, the mean wind speed for heights less than 1.00 km was the highest in
summer (7.6 m/s), followed by spring (6.8 m/s), winter (6.2 m/s) and fall (6.1 m/s). For heights less
than 0.48 km, the wind speed was the highest in spring; for heights between 0.48 km and 1.74 km,
the wind speed in summer was clearly higher than those of other seasons. For heights of 1.74 to
2.00 km, the wind speed was the highest in winter; nevertheless the seasonal difference at that level at
KP was not significant as that at CUHK.

To understand the seasonal variation, the seasonal vertical profiles of wind speed measured by
upper air sounding as well as the wind speed at 10 m above ground (wsd10m) at three automatic
weather stations were analyzed. The similar seasonal trend was also shown in the upper air sounding
data, see Figure 4d. Despite the fact that the upper air sounding only provided two data points
(08:00 and 20:00 HKT) in a day, the sounding vertical profiles confirm the LiDAR seasonal profiles.
Table 2 lists seasonal wsd10m at various Hong Kong Observatory (HKO) stations. The wsd10m at the
Waglan Island station shows an obvious seasonal wind variation with the highest wind speed in winter,
followed by summer, spring and fall. Nevertheless, the wsd10m at Sha Tin station (near to the CUHK
site) and the KP site was the highest in summer and spring, followed by fall and winter. It is noted that
the Waglan Island station is located at southeast Hong Kong, which is not affected by any mountains
and buildings, and thus serves as a background weather station for Hong Kong. The different seasonal
wind speed clearly demonstrates the influence of topography on wind environment in Hong Kong
and supports to the findings of vertical wind profiles.

Table 2. The seasonal surface horizontal wind speed (unit: m/s) at the Hong Kong Observatory
automatic weather stations: Sha Tin, King’s Park and Waglan Island. The data was extracted from
https://www.hko.gov.hk/en/cis/climat.htm on 7 Mar. 2020.

Sha Tin King’s Park Waglan Island

>Latitude 22◦24′09′′ 22◦18′43′′ 22◦10′56′′

>Longitude 114◦12′36′′ 114◦10′22′′ 114◦18′12′′

>spring 7.37 10.40 23.27
>summer 8.40 9.88 23.60
>fall 6.30 9.65 22.35

winter 6.80 9.67 25.00

3.2.2. Diurnal Vertical Profiles

Figure 5 shows the diurnal vertical profiles of horizontal wind speed. Similar to the annual vertical
profiles, the diurnal horizontal wind was stronger at the KP site than at the CUHK site. The diurnal
vertical profiles exhibited clear peak wind speeds for heights of 0.84 to 1.98 km at CUHK and 0.81 to
1.98 km at KP. The results reveal a clear vertical gradient of horizontal wind speed at the two LiDAR
sites from 21:00 to 12:00 HKT. The maximum hourly mean wind speed was 10.6 m/s, which occurred at
20:00 HKT and 15:00 HKT at CUHK and KP, respectively. The minimum hourly mean wind speeds
were 6.6 m/s and 7.8 m/s, which occurred at 17:00 HKT and 19:00 HKT at CUHK and KP, respectively.

https://www.hko.gov.hk/en/cis/climat.htm
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Figure 5. Diurnal vertical profiles of horizontal wind speed at the CUHK (blue) and KP (red) sites.

The vertical gradient was shown clearly in the averaged upper air sounding profiles, see Figure 4e.
Similar to the LiDAR profiles at 08:00 HKT and 20:00 HKT, the averaged mean vertical profile at 08:00
HKT has a clear vertical gradient with a peak at around 0.80 km, whereas it was not shown in the
20:00 HKT upper air sounding profile. Figure 6 shows the diurnal vertical profiles of prevailing wind
direction and the corresponding mean wind speed at the two LiDAR stations. The weaker vertical
gradient of horizontal wind speed at the two LiDAR sites between 13:00 HKT and 20:00 HKT was due
to the relatively weak northerly wind between 0.8 km and 1.4 km. It is noted that the northerly wind
should be blocked by the topography at the north of the two sites.

3.3. Horizontal Wind Direction

Figure 7 shows the annual vertical profiles of horizontal wind direction frequency at CUHK
and KP. At CUHK, the prevailing horizontal wind direction was north for heights less than 0.20 km.
The prevailing horizontal wind direction clearly shifted to northeast for heights of 0.20 to 1.80 km and
to north and northeast for heights of 1.80 to 2.00 km. At KP, the prevailing horizontal wind direction
was northeast for heights less than 1.70 km. Within this range, easterly wind was observed for heights
less than 1.10 km and northerly wind was observed for heights from 1.10 to 1.70 km. For heights from
1.70 to 2.00 km, the prevailing horizontal wind directions were north and northeast. These results
demonstrated the high spatial wind variability for heights less than 0.30 km and consistent prevailing
horizontal wind direction for heights greater than 0.39 km. The high spatial wind variability was
mainly due to the complex topography of Hong Kong [50], as discussed in Section 3.2.1.

Figure 8 shows the seasonal vertical profiles of horizontal wind direction frequency at the CUHK
and KP sites. In spring, the prevailing horizontal wind directions at CUHK were north and northeast
for heights less than 0.60 km, whereas those at KP were northeast and east. For heights from 0.60
to 1.70 km, the prevailing horizontal wind directions at these sites were more consistent (northeast
and east). For heights of 1.70 to 2.00 km, the prevailing horizontal wind directions shifted west and
southwest at these two sites.
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In summer, the prevailing horizontal wind directions at ground level were similar to those in
spring except that southerly and southwesterly winds were more frequently noted for heights less
than 1.00 km. At heights from 1.00 to 2.00 km, the prevailing horizontal wind directions at the two
sites consistently shifted to north and northeast. In fall and winter, the prevailing horizontal wind
directions at the two LiDAR sites were relatively stable, mainly northeast, followed by north and east.

3.4. Vertical Wind Velocity

Figure 9 displays the annual and seasonal vertical profiles of vertical wind speed (cm/s) at the
two LiDAR sites. At CUHK, the average vertical wind velocity for heights less than 1.00 km was
−0.26 cm/s. At this site, upward and downward air motions were observed. The annual profile indicates
that upward air motions dominated for heights less than 0.60 km, whereas downward air motions
dominated for heights from 0.60 to 2.00 km. The upward air motions at heights less than 0.60 km may
be induced by the surrounding topography. As shown in Figure 7, the prevailing horizontal wind
directions at CUHK were north and northeast. The northerly and northeasterly air flows were lifted
up by the surrounding topography, thus inducing upward air motions. Seasonal variations were also
observed. Positive mean vertical velocities were observed in spring, fall, and winter (2.56, 1.34, and
0.59 cm/s, respectively), whereas the mean vertical velocity observed in summer (−1.34 cm/s) was
consistent with the annual mean.
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Figure 9. (a) Annual vertical profiles of vertical wind velocity (cm/s) at CUHK (blue) and KP (red)
and seasonal vertical profiles at CUHK (b) and KP (c) during spring (black), summer (red), fall (blue),
and winter (magenta). Positive values refer to upward motions; whereas negative values refer to
download motions.

At KP, downward air motions dominated for heights less than 2.00 km. The annual mean vertical
wind velocity for heights less than 1.00 km was −14.92 cm/s, highlighting that downward motions at
KP were stronger than those at CUHK. Negative vertical wind velocities were consistent for all seasons.
The strongest downward air motion was observed during spring (−20.07 cm/s), followed by summer
(−18.42 cm/s), winter (−14.18 cm/s), and fall (10.90 cm/s).

Notably, when the prevailing northerly or northeasterly wind approaches Hong Kong, CUHK is
located upwind, whereas KP is located downwind. For heights less than 1.00 km, the upslope wind at
CUHK was clearly weaker than the downslope wind at KP. However, this difference was less apparent
in summer (Figure 9b). This may be because of the unstable atmosphere that occurs during summer as
a result of stronger solar radiation in that season. Relatively strong buoyancy force could be generated
from the warmer ground surface. The unstable atmosphere is favorable for wind going over mountains,
enhancing upslope flow [55]. On the other hand, the induced vertical rising air motion may suppress
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downslope flow. These two effects may reduce the difference between upslope and downslope winds
in summer.

3.5. Wind Profiles in HPEs

By examining the temperature and PM2.5 data for the thresholds described in the methods section,
nine HPEs were identified. Detailed information regarding each HPE is provided in Table 1 This
section details wind and backscatter analyses for the HPEs.

3.5.1. Horizontal Wind Speed and Direction

Figure 4 displays the annual and HPE vertical profiles of horizontal wind speed at the two LiDAR
sites, and Figure 10 depicts the vertical profiles of horizontal wind direction frequency during HPEs.
Compared with annual means, the horizontal wind speeds were clearly lower during HPEs. At CUHK,
the horizontal wind speed for heights less than 1.00 km during HPEs was 61.4% lower than the
annual mean; the horizontal wind speed over these heights was 51.7% lower at KP. The relatively low
horizontal wind speed was unfavorable for air pollutant dispersion.
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Figure 10. Vertical profiles of horizontal wind direction frequency during HPEs at CUHK (a) and KP (b).

The prevailing horizontal wind directions for heights less than 0.60 km were south and southwest
at the CUHK site and west and southwest at the KP site. In addition to lower horizontal wind speed,
the prevailing westerly wind during HPEs introduced regional TAP from the Greater Bay Area to Hong
Kong. Figure 11 depicts the weather chart of each HPE. The weather charts show that, in each HPE,
a typhoon was located in South China sea (east of Hong Kong). The westerly wind was induced by the
typhoon-associated counterclockwise wind flow, providing a wind environment for transboundary air
pollution within the region [25] and thus, the formation of a HPE. For heights from 0.60 to 1.20 km,
northerly and northwesterly wind predominated. For heights from 1.20 to 1.90 km, the prevailing
horizontal wind directions was north and northeast. For heights greater than 1.90 km, the easterly
winds predominated.
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Figure 11. The weather charts (08:00 HKT) of each HPE (a–i) and of a cold front case occurred on 18 Nov.
2019: (j) 02:00 HKT; (k) 08:00 HKT; (l) 14:00 HKT and (m) 20:00 HKT. The weather charts were obtained
from the Hong Kong Observatory web site (https://www.hko.gov.hk/en/wxinfo/currwx/wxcht.htm) on
2 Mar. 2020.

3.5.2. Vertical Wind Velocity

Figure 12 shows the vertical profiles of vertical wind velocity at the two LiDAR sites. At CUHK,
the annual vertical wind velocity for heights less than 0.66 km exhibited upward air motion (positive),
whereas the HPE profiles exhibited downward air motion. Although upward air motions were
observed for heights from 0.66 to 1.00 km, these motions were weak. For heights less than 1.00 km
at KP, the strong downward air motions in the annual profile weakened during HPEs. The overall
vertical air motions caused the accumulation of heat energy and air pollutants close to ground level.

https://www.hko.gov.hk/en/wxinfo/currwx/wxcht.htm
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Figure 12. Vertical profiles of annual (solid) and HPE (dashed) vertical wind velocity at CUHK (left) and
KP (right). Positive values refer to upward air motions, whereas negative values represent downward
air motions.

Figure 13 shows the mean aerosol backscatter profiles at the two LiDAR sites during the nine
identified HPEs. Higher aerosol backscatter was observed for heights less than 1.00 km at nighttime
and heights less than 1.20 km in the afternoon. The increased height of the top of the aerosol layer
in the afternoon may be attributable to the higher mixing height at this time due to the peak in solar
radiation. The aerosol backscatter profiles also reveal that that aerosol backscatter was typically the
highest for heights less than 0.60 km. This demonstrates an association with the vertical wind velocity
profiles in Figure 12. For heights less than 0.66 km, downward air motions were observed at the CUHK
site; the air motions for heights from 0.66 to 1.00 km were directed upward. At KP, the magnitude of
downward wind velocity decreased with heights up to approximately 0.60 km and then increased up
to 0.90 km. Compared with CUHK, KP had stronger downward air motions that resulted in higher
aerosol backscatter.
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3.6. A demonstration Case: Cold Front

To demonstrate the real-time monitoring capability of 3DREAMS, a cold front case occurred on
18 Nov. 2019 was discussed. Figure 11j–m depicts the weather charts of the cold front case at 02:00,
08:00, 14:00 and 20:00 HKT on 18 Nov. 2019, respectively. The cold front arrived at HK in the afternoon
on 18 Nov. 2019. Figure 14 shows the high-temporal-resolution vertical profiles of horizontal wind
speed at the two sites on 18 and 19 Nov. 2019. The results show that 3DREAMS captured the first
arrival of the cold front at the CUHK LiDAR site at between 16:30 and 17:00 HKT. The earlier arrival of
the cold front at the CUHK LiDAR site was due to the fact that the site is located at the northeastern
Hong Kong. When approaching from northwest, the cold front first hit the CUHK site. In addition,
the CUHK LiDAR shows a clear increase in wind speed at the altitudes between 0.50 km and 1.00 km,
which lasted until 08:00 HKT on the next day. It is noted that the increase in wind speed near the
ground level at KP LiDAR site was not as high as that at the CUHK LiDAR site. This difference was
due to the topographical effect that blocked the northerly flow to the KP LiDAR site.
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4. Discussion

This study developed the 3DREAMS using two Doppler LiDAR units for instantaneously
measuring wind and aerosol backscatter profiles, thus providing valuable datasets for wind and
aerosol backscatter that can be employed in weather and air quality studies. Previous studies have
relied heavily on data measured at the ground level. However, Tong et al. [24] identified significant
influences of upper atmosphere meteorology on air quality. Although some studies have measured
the vertical profiles of wind and air quality, the typically short measurement periods have resulted
in limited understanding of the long-term characteristics of and relationships between weather and
air quality. Other studies have relied on upper air sounding data that can be measured only two to
three times per day, whereas the present study developed the 3DREAMS to collect real-time upper
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atmosphere wind and aerosol backscatter information critical for long-term meteorological and air
quality studies. It should be highlighted that, while upper air sounding measurements are useful,
LiDARs can fill the missing data gaps, providing higher time-resolution measurements.

Spatial wind variability at various altitudes is critical for weather forecasting and air quality
studies. For example, local air pollutant emissions may be mixed or transported by lower-level wind;
whereas transboundary air pollution may be transported by a higher-level wind. Significant spatial
wind variability may affect local weather and thus, air quality at different altitudes and locations.
Yim et al. [50] identified high spatial wind variability in Hong Kong due to its complex topography.
Nevertheless, their study was limited to ground-level spatial wind variability. The current study
reveals that this high spatial wind variability extends to heights of 0.30 km for the horizontal wind
direction and 0.60 km for the vertical wind velocity. These findings suggest that further studies should
investigate wind shear at various altitudes in Hong Kong. Improved understanding of wind shear is
particularly critical for aviation safety at Hong Kong International Airport, which is located in an area
with complex topography. The demonstrated cold front case provided a useful example of how the
3DREAMS can be used to study spatial and vertical variations of various horizontal wind speed in
weather events.

Previous studies have mainly focused on the effects of extremely hot weather or air pollution
episodes. The present study introduced and investigated HPEs, which can adversely affect human
health as a result of the synergistic effects of high temperature and high PM2.5 concentration. The results
reveal that a prevailing horizontal wind direction introducing TAP from the Greater Bay Area and
significant reductions in horizontal wind speed at all altitudes and vertical wind velocity for heights
less than 0.66 km enhanced the accumulation of heat and air pollutants in the lower atmosphere.

5. Conclusions

This study developed the 3DREAMS to measure the long-term vertical profiles of horizontal
wind speed and direction and vertical wind velocity and aerosol backscatter in a highly dense city
with complex topography. In addition, the vertical profiles of nine identified HPEs were analyzed
to assess the influences of horizontal wind speed and direction and vertical wind velocity on heat
and aerosol accumulation. The results reveal high spatial wind variability for heights less than
approximately 0.60 km in Hong Kong, highlighting the influence of mountainous topography on
the wind environment in the city. Both upslope and downslope winds were observed at CUHK site,
whereas downward air motions predominated at KP site. The different air vertical motions resulted in
different vertical profiles of aerosol backscatter at the two sites during HPEs. Combining the analyses
of horizontal wind speed and direction and vertical wind velocity reveal that high temperatures and
PM2.5 concentrations were due to a prevailing westerly wind that introduced TAP from the Greater Bay
Area. Moreover, a substantial reduction in horizontal wind speed and vertical wind velocity resulted
in heat and air pollutant accumulation during HPEs. The findings of this study can provide critical
insight for weather forecast and future air quality research. The 3DREAMS will be further developed
to integrate new and existing LiDARs into the system and to include more sites to monitor wind and
air quality for the Greater Bay Area.
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