A Time-Gated, Time-Correlated Single-Photon-Counting Lidar to Observe Atmospheric Clouds at Submeter Resolution
Abstract
:1. Introduction
2. Method
2.1. Design of the T2 Lidar
2.2. Calibration
2.3. Lidar Alignment
3. Results
4. Summary and Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Lidar | Light detection and ranging |
TCSPC | Time-correlated single-photon counting |
T2 lidar | Time-gated, time-correlated single-photon-counting lidar |
DOE | Department of Energy |
ARM | Atmospheric Radiation Measurement |
BNL | Brookhaven National Laboratory |
CMAS | Center for Multiscale Applied Sensing |
References
- Stith, J.L.; Baumgardner, D.; Haggerty, J.; Hardesty, R.M.; Lee, W.C.; Lenschow, D.; Pilewskie, P.; Smith, P.L.; Steiner, M.; Vömel, H. 100 years of progress in atmospheric observing systems. Meteorol. Monogr. 2018, 59, 2.1–2.55. [Google Scholar] [CrossRef]
- Schmid, B.; Ellingson, R.G.; McFarquhar, G.M. ARM aircraft measurements. Meteorol. Monogr. 2016, 57, 10.1–10.13. [Google Scholar] [CrossRef]
- Wilczak, J.; Gossard, E.; Neff, W.; Eberhard, W. Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress. In Boundary-Layer Meteorology 25th Anniversary Volume; Springer: Dordrecht, The Netherlands, 1996; Volume 78, pp. 321–349. [Google Scholar] [CrossRef]
- Ackerman, S.; Platnick, S.; Bhartia, P.; Duncan, B.; L’ecuyer, T.; Heidinger, A.; Skofronick-Jackson, G.; Loeb, N.; Schmit, T.; Smith, N. Satellites see the world’s atmosphere. Meteorol. Monogr. 2019, 59, 4.1–4.53. [Google Scholar] [CrossRef]
- Wang, Z.; Menenti, M. Challenges and Opportunities in Lidar Remote Sensing. Front. Remote Sens. 2021, 2, 641723. [Google Scholar] [CrossRef]
- Illingworth, A.; Hogan, R.; O’connor, E.; Bouniol, D.; Brooks, M.; Delanoë, J.; Donovan, D.; Eastment, J.; Gaussiat, N.; Goddard, J.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Farrell, D.; Hirsch, L.; Jansen, F.; Nuijens, L.; Serikov, I.; Brügmann, B.; Forde, M.; Linne, H.; Lonitz, K.; et al. The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Am. Meteorol. Soc. 2016, 97, 787–801. [Google Scholar] [CrossRef]
- Sarna, K.; Russchenberg, H.W. Monitoring aerosol–cloud interactions at the CESAR Observatory in the Netherlands. Atmos. Meas. Tech. 2017, 10, 1987–1997. [Google Scholar] [CrossRef] [Green Version]
- Hey, J.D.V. A Novel Lidar Ceilometer: Design, Implementation and Characterisation. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2015. [Google Scholar] [CrossRef]
- Morris, V.R. Ceilometer Instrument Handbook; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Washington, DC, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Flynna, C.J.; Mendozaa, A.; Zhengb, Y.; Mathurb, S. Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express 2007, 15, 2785–2790. [Google Scholar] [CrossRef]
- Muradyan, P.; Coulter, R. Micropulse Lidar (MPL) Handbook; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Washington, DC, USA, 2020. [Google Scholar] [CrossRef] [Green Version]
- Grund, C.J.; Banta, R.M.; George, J.L.; Howell, J.N.; Post, M.J.; Richter, R.A.; Weickmann, A.M. High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Ocean Technol. 2001, 18, 376–393. [Google Scholar] [CrossRef]
- Newsom, R.; Krishnamurthy, R. Doppler Lidar (DL) Instrument Handbook; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Washington, DC, USA, 2020. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.W.; Hostetler, C.A.; Cook, A.L.; Harper, D.B.; Ferrare, R.A.; Mack, T.L.; Welch, W.; Izquierdo, L.R.; Hovis, F.E. Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt. 2008, 47, 6734–6752. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, J. High Spectral Resolution Lidar (HSRL) Instrument Handbook; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.S.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor lidar Polly XT: The neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef] [Green Version]
- Newsom, R.K.; Bambha, R.; Chand, D. Raman Lidar (RL) Instrument Handbook; Technical Report; DOE Office of Science Atmospheric Radiation Measurement (ARM) User Facility: Washington, DC, USA, 2021. [Google Scholar] [CrossRef] [Green Version]
- Endo, S.; Zhang, D.; Vogelmann, A.M.; Kollias, P.; Lamer, K.; Oue, M.; Xiao, H.; Gustafson, W.I., Jr.; Romps, D.M. Reconciling differences between large-eddy simulations and Doppler lidar observations of continental shallow cumulus cloud-base vertical velocity. Geophys. Res. Lett. 2019, 46, 11539–11547. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R.A. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 2003, 35, 183–227. [Google Scholar] [CrossRef] [Green Version]
- Beals, M.A.; Fugal, J.P.; Shaw, R.A.; Lu, J.; Spuler, S.M.; Stith, J.L. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science 2015, 350, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Bogenschutz, P.A.; Krueger, S.K. A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models. J. Adv. Model. Earth Syst. 2013, 5, 195–211. [Google Scholar] [CrossRef]
- Hoffmann, F.; Feingold, G. Entrainment and mixing in stratocumulus: Effects of a new explicit subgrid-scale scheme for large-eddy simulations with particle-based microphysics. J. Atmos. Sci. 2019, 76, 1955–1973. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H.; et al. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Rehain, P.; Sua, Y.M.; Zhu, S.; Dickson, I.; Muthuswamy, B.; Ramanathan, J.; Shahverdi, A.; Huang, Y.P. Noise-tolerant single photon sensitive three-dimensional imager. Nat. Commun. 2020, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Wallace, A.; Nichol, C.; Woodhouse, I. Recovery of Forest Canopy Parameters by Inversion of Multispectral LiDAR Data. Remote Sens. 2012, 4, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Inomata, T.; Triadan, D.; Vázquez López, V.A.; Fernandez-Diaz, J.C.; Omori, T.; Méndez Bauer, M.B.; García Hernández, M.; Beach, T.; Cagnato, C.; Aoyama, K.; et al. Monumental architecture at Aguada Fénix and the rise of Maya civilization. Nature 2020, 582, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Isbaner, S.; Karedla, N.; Ruhlandt, D.; Stein, S.C.; Chizhik, A.; Gregor, I.; Enderlein, J. Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging. Opt. Express 2016, 24, 9429–9445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titchener, J.; Millington-Smith, D.; Goldsack, C.; Harrison, G.; Dunning, A.; Ai, X.; Reed, M. Single photon Lidar gas imagers for practical and widespread continuous methane monitoring. Appl. Energy 2022, 306, 118086. [Google Scholar] [CrossRef]
- Zhu, S.; Sua, Y.M.; Rehain, P.; Huang, Y.P. Single photon imaging and sensing of highly obscured objects around the corner. Opt. Express 2021, 29, 40865–40877. [Google Scholar] [CrossRef]
- Roberts, G.W.; Ali-Bakhshian, M. A Brief Introduction to Time-to-Digital and Digital-to-Time Converters. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 153–157. [Google Scholar] [CrossRef]
- Barton-Grimley, R.A.; Stillwell, R.A.; Thayer, J.P. High resolution photon time-tagging lidar for atmospheric point cloud generation. Opt. Express 2018, 26, 26030–26044. [Google Scholar] [CrossRef]
- Kovalev, V.A.; Eichinger, W.E. Elastic Lidar: Theory, Practice, and Analysis Methods; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
Number | Component |
---|---|
1 | Lidar peripheral controller and computer |
2 | Programmable power distribution unit |
3 | Single-photon detector with built-in time-to-digital converter |
4 | Digital delay pulse generator |
5 | Laser head |
6 | Motorized actuator for laser alignment |
7 | Beam expander |
8 | Telescope |
9 | Camera with focuser for laser alignment |
10 | Optical fiber eyepiece with XYZ adjustments for laser alignment |
11 | Triple-filter case |
12 | Laser power supply and control unit |
System Parameter | Value |
---|---|
Wavelength | 532 nm |
Laser repetition rate | 20.6 kHz |
Laser pulse width | 650 ps |
Laser output energy | ≈3.4 J |
Beam divergence | ≈0.029 mrad |
Polarization | ≈Linear |
Receiver telescope aperture | ≈200 mm |
Maximum range | ≈7.28 km |
Range resolution | ≈10 cm |
Filter spectral width (FWHM) | ≈0.21 nm |
Narrowest temporal gating | ≈5.5 ns |
Photon-counting integration time | 125 ms |
Detector quantum efficiency | ≈65 % |
Detector dark-count rate | ≈50 Hz |
Detector time resolution | 45 ps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Sua, Y.M.; Louridas, A.; Lamer, K.; Zhu, Z.; Luke, E.; Huang, Y.-P.; Kollias, P.; Vogelmann, A.M.; McComiskey, A. A Time-Gated, Time-Correlated Single-Photon-Counting Lidar to Observe Atmospheric Clouds at Submeter Resolution. Remote Sens. 2023, 15, 1500. https://doi.org/10.3390/rs15061500
Yang F, Sua YM, Louridas A, Lamer K, Zhu Z, Luke E, Huang Y-P, Kollias P, Vogelmann AM, McComiskey A. A Time-Gated, Time-Correlated Single-Photon-Counting Lidar to Observe Atmospheric Clouds at Submeter Resolution. Remote Sensing. 2023; 15(6):1500. https://doi.org/10.3390/rs15061500
Chicago/Turabian StyleYang, Fan, Yong Meng Sua, Alexandros Louridas, Katia Lamer, Zeen Zhu, Edward Luke, Yu-Ping Huang, Pavlos Kollias, Andrew M. Vogelmann, and Allison McComiskey. 2023. "A Time-Gated, Time-Correlated Single-Photon-Counting Lidar to Observe Atmospheric Clouds at Submeter Resolution" Remote Sensing 15, no. 6: 1500. https://doi.org/10.3390/rs15061500