Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images
Abstract
:1. Introduction
2. Location and Geological Setting of the Selmun Promontory
3. Materials and Methods
3.1. Electrical Resistivity Tomography (ERT) Investigations
3.2. Ground Penetrating Radar (GPR) Investigations
3.3. Time-Lapse Imagery Analysis in GIS for the Identification of Blocks Movement
4. Results
4.1. Geophysics Investigations Results
4.2. Multi-Temporal Data Analysis Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colica, E.; D’Amico, S.; Iannucci, R.; Martino, S.; Gauci, A.; Galone, L.; Galea, P.; Paciello, A. Using unmanned aerial vehicle photogrammetry for digital geological surveys: Case study of Selmun promontory, northern of Malta. Environ. Earth Sci. 2021, 80, 1–14. [Google Scholar] [CrossRef]
- Magri, O.; Mantovani, M.; Pasuto, A.; Soldati, M. Geomorphological investigation and monitoring of lateral spreading along the north-west coast of Malta. Geogr. Fis. E Din. Quat. 2008, 31, 171–180. [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides, Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Gigli, G.; Frodella, W.; Mugnai, F.; Tapete, D.; Cigna, F.; Fanti, R.; Intrieri, E.; Lombardi, L. Instability mechanisms affecting cultural heritage sites in the Maltese Archipelago. Nat. Hazards Earth Syst. Sci. 2012, 12, 1883–1903. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, S.; Lombardo, G.; Panzera, F. Seismicity of the Mediterranean Region and mitigation of earthquake losses. Phys. Chem. Earth 2013, 63, 1–2. [Google Scholar] [CrossRef]
- Corominas, J.; Mavrouli, O.; Ruiz-Carulla, R. Rockfall occurrence and fragmentation. In Workshop on World Landslide Forum; Springer: Cham, Switzerland, 2017; pp. 75–97. [Google Scholar]
- Ruiz-Carulla, R.; Corominas, J.; Mavrouli, O. A Fractal Fragmentation Model for Rockfalls. Landslides 2017, 14, 875–889. [Google Scholar] [CrossRef]
- Jongmans, D.; Garambois, S. Geophysical investigation of landslides: A review. Bull. De La Société Géologique De Fr. 2007, 178, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Vessia, G.; Parise, M.; Tromba, G. A strategy to address the task of seismic micro-zoning in landslide-prone areas. Adv. Geosci. 2013, 35, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Günther, A.; Reichenbach, P.; Malet, J.P.; Van Den Eeckhaut, M.; Hervás, J.; Dashwood, C.; Guzzetti, F. Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 2013, 10, 529–546. [Google Scholar] [CrossRef] [Green Version]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Forte, E.; Mocnik, A.; Pasuto, A.; Piacentini, D.; Soldati, M. A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 2013, 10, 611–622. [Google Scholar] [CrossRef]
- Mantovani, M.; Devoto, S.; Piacentini, D.; Prampolini, M.; Soldati, M.; Pasuto, A. Advanced SAR interferometric analysis to support geomorphological interpretation of slow-moving coastal landslides (Malta, Mediterranean Sea). Remote Sens. 2016, 8, 443. [Google Scholar] [CrossRef] [Green Version]
- Hyde, H.P.T. Geology of the Maltese Islands; Lux Press: Montreal, QC, Canada, 1955. [Google Scholar]
- Pedley, H.M.; House, M.R.; Waugh, B. The geology of Malta and Gozo. Proc. Geol. Assoc. 1976, 87, 325–341. [Google Scholar] [CrossRef]
- Pedley, H.M.; House, M.R.; Waugh, B. The geology of the Pelagian block: The Maltese Islands. In The Ocean Basins and Margins; Springer: Boston, MA, USA, 1978; pp. 417–433. [Google Scholar]
- Pedley, M. The Calabrian stage, Pleistocene highstand in Malta: A new marker for unravelling the late Neogene and quaternary history of the islands. J. Geol. Soc. 2011, 168, 913–926. [Google Scholar] [CrossRef]
- Scerri, S. Sedimentary evolution and resultant geological landscapes. In Landscapes and Landforms of the Maltese Islands; Gauci, R., Schembri, J.A., Eds.; Springer: Cham, Switzerland, 2019; pp. 31–47. [Google Scholar]
- Continental Shelf Department Malta, Geological Map of the Maltese Islands (1:10,000). 2022. Available online: https://experience.arcgis.com/experience/04736039724248fb8dc52615f1528e2e/page/Page/ (accessed on 30 December 2022).
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta). Geophys. J. Int. 2018, 213, 1146–1161. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J. Seismol. 2020, 24, 897–916. [Google Scholar] [CrossRef]
- Goudie, A. Encyclopedia of Geomorphology; Routledge: London, UK, 2004. [Google Scholar]
- Hoek, E.; Bray, J.D. Rock Slope Engineering; CRC Press: Boca Raton, FL, USA, 1981. [Google Scholar]
- Loke, M.H. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method: Wenner (α, β, γ), Dipole–Dipole, Inline Pole-Pole, Pole-Dipole, Equatorial Dipole-Dipole, Offset pole-dipole, Wenner-Schlumberger, Gradient and Non-Conventional Arrays. On Land, Aquatic and Cross-Borehole Surveys. 2015. Available online: http://web.gps.caltech.edu/classes/ge111/Docs/Res2dinv_Guide.Pdf (accessed on 30 December 2022).
- Loke, M.H. General Public License, RES2DINVx64 Ver. 4,8.10 Date 2-5-2018, Copyright (2018) M.H.Loke. 2018. Available online: https://www.geotomosoft.com/downloads.php (accessed on 18 September 2022).
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Caselle, C.; Bonetto, S.; Comina, C.; Stocco, S. GPR surveys for the prevention of karst risk in underground gypsum quarries. Tunn. Undergr. Space Technol. 2020, 95, 103137. [Google Scholar] [CrossRef]
- Colica, E.; Antonazzo, A.; Auriemma, R.; Coluccia, L.; Catapano, I.; Ludeno, G.; D’Amico, S.; Persico, R. GPR investigation at the archaeological site of Le Cesine, Lecce, Italy. Information 2021, 12, 412. [Google Scholar] [CrossRef]
- Persico, R.; D’Amico, S.; Matera, L.; Colica, E.; De Giorgio, C.; Alescio, A.; Sammut, C.; Galea, P. GPR Investigations at St John’s Co-Cathedral in Valletta; 17(3-GPR in Civil and Environmental Engineering: Recent Methodological Advances). Near Surf. Geophys. 2019, 17, 213–229. [Google Scholar]
- Shukla, S.B.; Chowksey, V.M.; Prizomwala, S.P.; Ukey, V.M.; Bhatt, N.P.; Maurya, D.M. Internal sedimentary architecture and coastal dynamics as revealed by ground penetrating radar, Kachchh coast, western India. Acta Geophys. 2013, 61, 1196–1210. [Google Scholar] [CrossRef]
- Leucci, G.; Persico, R.; De Giorgi, L.; Lazzari, M.; Colica, E.; Martino, S.; Iannucci, R.; Galone, L.; D’Amico, S. Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta). Sustainability 2021, 13, 12538. [Google Scholar] [CrossRef]
- Ercoli, M.; Pauselli, C.; Frigeri, A.; Forte, E.; Federico, C. “Geophysical paleoseismology” through high resolution GPR data: A case of shallow faulting imaging in Central Italy. J. Appl. Geophys. 2013, 90, 27–40. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). J. Appl. Geophys. 1996, 36, 19–30. [Google Scholar] [CrossRef]
- Saponaro, A.; Dipierro, G.; Cannella, E.; Panarese, A.; Galiano, A.M.; Massaro, A. A UAV-GPR Fusion Approach for the Characterization of a Quarry Excavation Area in Falconara Albanese, Southern Italy. Drones 2021, 5, 40. [Google Scholar] [CrossRef]
- Zanzi, L.; Hojat, A.; Ranjbar, H.; Karimi-Nasab, S.; Azadi, A.; Arosio, D. GPR measurements to detect major discontinuities at Cheshmeh-Shirdoosh limestone quarry, Iran. Bull. Eng. Geol. Environ. 2019, 78, 743–752. [Google Scholar] [CrossRef]
- Cardarelli, E.; Marrone, C.; Orlando, L. Evaluation of tunnel stability using integrated geophysical methods. J. Appl. Geophys. 2003, 52, 93–102. [Google Scholar] [CrossRef]
- Orlando, L.; Marchesi, E. Georadar as a tool to identify and characterise solid waste dump deposits. J. Appl. Geophys. 2001, 48, 163–174. [Google Scholar] [CrossRef]
- Schönemann, E.; Becker, M.; Springer, T. A new approach for GNSS analysis in a multi-GNSS and multi-signal environment. J. Geod. Sci. 2011, 1, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Yelf, R. Where is true time zero? In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, Delft, The Netherlands, 21–24 June 2004; GPR 2004. IEEE: Piscataway, NJ, USA, 2014; Volume 1, pp. 279–282. [Google Scholar]
- Soldovieri, F.; Prisco, G.; Persico, R. Application of microwave tomography in hydrogeophysics: Some examples. Vadose Zone J. 2008, 7, 160–170. [Google Scholar] [CrossRef]
- Steinbeck, L.; Mester, A.; Zimmermann, E.; Klotzsche, A.; van Waasen, S. In situ time-zero correction for a ground penetrating radar monitoring system with 3000 antennas. Meas. Sci. Technol. 2022, 33, 075904. [Google Scholar] [CrossRef]
- Pipan, M.; Baradello, L.; Forte, E.; Prizzon, A. GPR study of bedding planes, fractures, and cavities in limestone. In Proceedings of the Eighth International Conference on Ground Penetrating Radar, SPIE, Gold Coast, Australia, 23–26 May 2000; Volume 4084, pp. 682–687. [Google Scholar]
- Bianchini Ciampoli, L.; Tosti, F.; Economou, N.; Benedetto, F. Signal processing of GPR data for road surveys. Geosciences 2019, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Martinez, A.; Byrnes, A.P. Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation. Curr. Res. Earth Sci. 2001, 1–16. [Google Scholar] [CrossRef]
- Global Mapper®, Blue Marble Geographics. 2022. Available online: https://www.bluemarblegeo.com/global-mapper/ (accessed on 18 September 2022).
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of using UAV digital photogrammetry in the study of slow-moving coastal landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- ISRM. International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar] [CrossRef]
- Bozzano, F.; Bretschneider, A.; Martino, S. Stress–strain history from the geological evolution of the Orvieto and Radicofani cliff slopes (Italy). Landslides 2008, 5, 351–366. [Google Scholar] [CrossRef]
- Bozzano, F.; Martino, S.; Prestininzi, A. Ruolo dell’assetto geologico sulle condizioni di stabilità della collina di Gerace (Reggio Calabria, Italia). Ital. J. Geosci. 2010, 129, 280–296. [Google Scholar]
- Bozzano, F.; Bretschneider, A.; Esposito, C.; Martino, S.; Prestininzi, A.; Mugnozza, G.S. Lateral spreading processes in mountain ranges: Insights from an analogue modelling experiment. Tectonophysics 2013, 605, 88–95. [Google Scholar] [CrossRef]
- Alfaro, P.; Delgado, J.; Esposito, C.; Tortosa, F.G.; Marmoni, G.M.; Martino, S. Time-dependent modelling of a mountain front retreat due to a fold-to-fault controlled lateral spreading. Tectonophysics 2019, 773, 228233. [Google Scholar] [CrossRef]
- Farrugia, D.; Galea, P.; D’Amico, S.; Paolucci, E. Sensitivity of ground motion parameters to local shear-wave velocity models: The case of buried low-velocity layers. Soil Dyn. Earthq. Eng. 2017, 100, 196–205. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S. Rock mass characterization coupled with seismic noise measurements to analyze the unstable cliff slope of the Selmun promontory (Malta). In ISRM European Rock Mechanics Symposium-EUROCK 2017; OnePetro: Ostrava, Czech Republic, 20–22 June 2017. [Google Scholar]
- Panzera, F.; D’Amico, S.; Lotteri, A.; Galea, P.; Lombardo, G. Seismic site response of unstable steep slope using noise measurements: The case study of Xemxija Bay area, Malta. Nat. Hazards Earth Syst. Sci. 2012, 12, 3421–3431. [Google Scholar] [CrossRef] [Green Version]
- Devoto, S.; Hastewell, L.J.; Prampolini, M.; Furlani, S. Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data 2021, 6, 81. [Google Scholar] [CrossRef]
- Soldati, M.; Devoto, S.; Prampolini, M.; Pasuto, A. The spectacular landslide-controlled landscape of the northwestern coast of Malta. In Landscapes and Landforms of the Maltese Islands; Springer: Cham, Switzerland, 2019; pp. 167–178. [Google Scholar]
- D’Amico, S.; Galone, L.; Colica, E.; Gauci, A.; Valentino, G.; Piroddi, L.; Iregbeyen, P. Investigating Pocket beach dynamics in Malta: The SIPOBED project. In Proceedings of the 2022 IEEE International Workshop on Metrology for the Sea, Milazzo, Italy, 3–5 October 2022. [Google Scholar] [CrossRef]
Date | Source | Specs |
---|---|---|
1957 | Analogue aerial photo | Lens 6″ 4200 feet Scale 1:8000 |
1967 | Analogue aerial photo | Lens 6″ Scale 1:4000 |
1978 | Analogue aerial photo | Lens 152.95 mm Scale 1:10,000 |
1988 | Analogue aerial photo | Lens 153.23 mm Scale 1:6000 |
1998 | Analogue aerial photo | Lens 303.98 mm Scale 1:10,000 |
2008 | Analogue aerial photo | Lens 303.55 m Scale 1:4000 |
2009 | Satellite image Maps data: Google, Image © 2022 Maxar Technologies | N/A |
2013 | Satellite image Maps data: Google, Image © 2022 CNES/Airbus | N/A |
2017 | Satellite image Maps data: Google, Image © 2022 Maxar Technologies | N/A |
2018 | UAV Orthomosaic | Camera sensor: 1″ CMOS Effective pixels: 20 M. Lens: FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 auto focus at 1 m–∞ |
2021 | UAV Orthomosaic | Camera sensor: 1″ CMOS Effective pixels: 20 M. Lens: FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 auto focus at 1 m–∞ |
Time-Lapse | Collapsed Block | Area in Square Metres | Height in Metres Measured in the 3D Model | Estimated Volume in Cubic Metres (Area × Height) | Polygon Colour |
---|---|---|---|---|---|
1957–1967 | A | 21 | 5 | 105 | Yellow |
1988–1998 | B–C | 85–708 | 10–13 | 850–9204 | Orange–Red |
1998–2008 | D | 93 | 12 | 1116 | Green |
1988–1998 | E* | 77 | N/A | N/A | Black |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colica, E.; Galone, L.; D’Amico, S.; Gauci, A.; Iannucci, R.; Martino, S.; Pistillo, D.; Iregbeyen, P.; Valentino, G. Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images. Remote Sens. 2023, 15, 1465. https://doi.org/10.3390/rs15051465
Colica E, Galone L, D’Amico S, Gauci A, Iannucci R, Martino S, Pistillo D, Iregbeyen P, Valentino G. Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images. Remote Sensing. 2023; 15(5):1465. https://doi.org/10.3390/rs15051465
Chicago/Turabian StyleColica, Emanuele, Luciano Galone, Sebastiano D’Amico, Adam Gauci, Roberto Iannucci, Salvatore Martino, Davide Pistillo, Peter Iregbeyen, and Gianluca Valentino. 2023. "Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images" Remote Sensing 15, no. 5: 1465. https://doi.org/10.3390/rs15051465
APA StyleColica, E., Galone, L., D’Amico, S., Gauci, A., Iannucci, R., Martino, S., Pistillo, D., Iregbeyen, P., & Valentino, G. (2023). Evaluating Characteristics of an Active Coastal Spreading Area Combining Geophysical Data with Satellite, Aerial, and Unmanned Aerial Vehicles Images. Remote Sensing, 15(5), 1465. https://doi.org/10.3390/rs15051465