A Decade from the Costa Concordia Shipwreck: Lesson Learned on the Contribution of Infrared Thermography during the Maritime Salvage Operations
Abstract
:1. Introduction
The Costa Concordia Maritime Disaster Management
- defueling and caretaking (carried out from 18 January 2012 to 15 September 2013): this phase had the primary objective of removing the fuel from the vessel’s tanks and engine rooms as quickly as possible, in order to ensure the protection of the marine environment by cleaning of the seabed from the shipwreck debris (Figure 1d);
- parbuckling and post—parbuckling (from 16 September to 31 December 2013): this phase developed with the initial righting of the wreck by rotating the vessel around the longitudinal axis of the ship using cables, giant inflatable buoys, and ballasting with sponsons (Figure 1e);
2. Materials and Methods
The Costa Concordia Shipwreck IRT Monitoring
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanov, A.Y. The oil spill from a shipwreck in Kerch Strait: Radar monitoring and numerical modelling. Int. J. Remote Sens. 2010, 31, 4853–4868. [Google Scholar] [CrossRef]
- Pisano, A.; Bignami, F.; Santoleri, R. Oil spill detection in glint-contaminated near-infrared MODIS imagery. Remote Sens. 2015, 7, 1112–1134. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, S.; Liu, R.W.; Wu, H.; Han, B.; Zhao, J. Quantifying Arctic oil spilling event risk by integrating an analytic network process and a fuzzy comprehensive evaluation model. Ocean Coast. Manag. 2022, 228, 106326. [Google Scholar] [CrossRef]
- Lodge, A.E. The Remote Sensing of Oil Slicks; John Wiley & Son: Chichester, UK, 1989; p. 147. ISBN -0471920436. [Google Scholar]
- Ciampalini, A.; Raspini, F.; Bianchini, S.; Tarchi, D.; Vespe, M.; Moretti, S.; Casagli, N. The Costa Concordia last cruise: The first application of high frequency monitoring based on COSMO-SkyMed constellation for wreck removal. ISPRS J. Photogramm. Remote Sens. 2016, 112, 37–49. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, A.; Moreno, V. An oil spill monitoring system based on SAR images. Spill Sci. Technol. Bull. 1996, 3, 65–71. [Google Scholar] [CrossRef]
- Montero, P.; Blanco, J.; Cabanas, J.M.; Maneiro, J.; Pazos, Y.; Moroño, A.; Montero, P.; Balseiro, C.F.; Carracedo, P.; Gomez, B.; et al. Oil spill monitoring and forecasting on the Prestige-Nassau accident. In Arctic and Marine Oilspill Program Technical Seminar; Environment Canada: Toronto, ON, Canada, 2003; Volume 2, pp. 1013–1030. [Google Scholar]
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Liu, Q.; Hu, J.; Li, X.; Yeung, K. Oil-spill monitoring in the coastal waters of Hong Kong and vicinity. Mar. Geod. 2012, 35, 93–106. [Google Scholar] [CrossRef]
- Rogne, T.; MacDonald, I.; Smith, A.; Kennicutt, M.C.; Giammona, C.S. Multispectral remote sensing and truth data from the Tenyo Maru oil spill. Photogramm. Eng. Remote Sens. 1993, 59, 3. [Google Scholar]
- Grimaldi, C.S.L.; Casciello, D.; Coviello, I.; Lacava, T.; Pergola, N.; Tramutoli, V. An improved RST approach for timely alert and Near Real Time monitoring of oil spill disasters by using AVHRR data. Nat. Hazards Earth Syst. Sci. 2011, 11, 1281. [Google Scholar] [CrossRef] [Green Version]
- Maianti, P.; Rusmini, M.; Tortini, R.; Dalla Via, G.; Frassy, F.; Marchesi, A.; Rota Nodari, F.; Gianinetto, M. Monitoring large oil slick dynamics with moderate resolution multispectral satellite data. Nat. Hazards 2014, 73, 473–492. [Google Scholar] [CrossRef]
- Balogun, A.L.; Yekeen, S.T.; Pradhan, B.; Althuwaynee, O.F. Spatio-Temporal Analysis of Oil Spill Impact and Recovery Pattern of Coastal Vegetation and Wetland Using Multispectral Satellite Landsat 8-OLI Imagery and Machine Learning Models. Remote Sens. 2020, 12, 1225. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, Y.; Ma, L.; Li, X. Oil Spill Monitoring Using MODIS Data. In Second International Conference on Space Information Technology; International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6795, p. 67955G. [Google Scholar]
- Casciello, D.; Lacava, T.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques for oil spill detection and monitoring using AVHRR thermal infrared bands. Int. J. Remote Sens. 2011, 32, 4107–4129. [Google Scholar] [CrossRef]
- Xing, Q.; Li, L.; Lou, M.; Bing, L.; Zhao, R.; Li, Z. Observation of oil spills through landsat thermal infrared imagery: A case of deepwater horizon. Aquat. Procedia 2015, 3, 151–156. [Google Scholar] [CrossRef]
- Allik, T.H.; Dixon, R.E.; Walters, M. Remote measurement of thick oil spill depth using thermal imagery. In Ocean Sensing and Monitoring X. Int. Soc. Opt. Photonics 2018, 10631, 106310F. [Google Scholar]
- Fingas, M.F.; Brown, C.E. Oil Spill Remote Sensors: Review, Trends and New Developments; (No. CONF-970319-); The Environmental Research Institute of Michigan (ERIM): Ann Arbor, MI, USA, 1997. [Google Scholar]
- Lehr, W.J.; Simecek-Beatty, D. The relation of Langmuir circulation processes to the standard oil spill spreading, dispersion, and transport algorithms. Spill Sci. Technol. Bull. 2000, 6, 247–253. [Google Scholar] [CrossRef]
- Palmer, D.; Borstad, G.A.; Boxall, S.R.; House, R.; Quay, E. Airborne multispectral remote sensing of the January 1993 Shetlands oil spill. In Proceedings of the Second Thematic Conference on Remote Sensing for Marine and Coastal Environments: Needs, Solutions and Applications, New Orleans, LA, USA, 31 January–2 February 1994; pp. 546–558. [Google Scholar]
- Shen, S.S.; Lewis, P.E. Deepwater Horizon oil spill monitoring using airborne multispectral infrared imagery. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVII, Orlando, FL, USA, 25–28 April 2011; Volume 8048, p. 80480H. [Google Scholar]
- Grierson, I.T. Use of airborne thermal imagery to detect and monitor inshore oil spill residues during darkness hours. Environ. Manag. 1998, 6, 905–912. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef] [Green Version]
- De Kerf, T.; Gladines, J.; Sels, S.; Vanlanduit, S. Oil spill detection using machine learning and infrared images. Remote Sens. 2020, 12, 4090. [Google Scholar] [CrossRef]
- Goodman, R. Overview and future trends in oil spill remote sensing. Spill Sci. Technol. Bull. 1994, 1, 11–21. [Google Scholar] [CrossRef]
- Robbe, N.; Hengstermann, T. Remote sensing of marine oil spills from airborne platforms using multi-sensor systems. Water Pollut. VIII Model. Monit. Manag. 2006, 1, 347–355. [Google Scholar]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, features, and machine learning for oil spill detection and monitoring: A review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef] [PubMed]
- Schröder-Hinrichs, J.U.; Hollnagel, E.; Baldauf, M. From Titanic to Costa Concordia—A century of lessons not learned. WMU J. Marit. Aff. 2012, 11, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Fiaschi, A.; Matassoni, L.; Lotti, A.; Saccorotti, G. Micro-seismic monitoring after the shipwreck of the Costa Concordia at Giglio Island (Italy). Acta Geophys. 2017, 65, 1019–1027. [Google Scholar] [CrossRef]
- Manconi, A.; Allasia, P.; Giordan, D.; Baldo, M.; Lollino, G. Monitoring the Stability of Infrastructures in An Emergency Scenario: The “Costa Concordia” Vessel Wreck. In Global View of Engineering Geology and the Environment; Taylor & Francis Group: London, UK, 2013. [Google Scholar]
- Raspini, F.; Moretti, S.; Fumagalli, A.; Rucci, A.; Novali, F.; Ferretti, A.; Claudio Prati, C.; Casagli, N. The COSMO-SkyMed constellation monitors the Costa Concordia wreck. Remote Sens. 2014, 6, 3988–4002. [Google Scholar] [CrossRef] [Green Version]
- Broussolle, J.; Kyovtorov, V.; Basso, M.; Castiglione, G.F.D.S.E.; Morgado, J.F.; Giuliani, R.; Olivero, F.; Sammartino, P.F.; Tarchi, D. MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J. Photogramm. Remote Sens. 2014, 91, 50–58. [Google Scholar] [CrossRef]
- Casagli, N.; Moretti, S.; Gabbani, G.; Catani, F.; Fanti, R.; Agostini, A.; Bardi, F.; Battistini, A.; Bianchini, S.; Ciampalini, A.; et al. Monitoraggio Della Costa Concordia (Isola Del Giglio)—Rapporto Finale. Presidenza Del Consiglio Dei Ministri—Dipartimento Della Protezione Civile; Internal Report; Earth Science Department, University of Florence: Florence, Italy, 2014. (In Italian) [Google Scholar]
- Dotta, G.; Gigli, G.; Ferrigno, F.; Gabbani, G.; Nocentini, M.; Lombardi, L.; Agostini, A.; Nolesini, T.; Casagli, N. Geomechanical characterization and stability analysis of the bedrock underlying the Costa Concordia cruise ship. Rock Mech. Rock Eng. 2017, 50, 2397–2412. [Google Scholar] [CrossRef] [Green Version]
- Maldague, X. Theory and Practice of Infrared Technology for Non-Destructive Testing; John-Wiley & Sons: Hoboken, NJ, USA, 2001; 684p. [Google Scholar]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Ludwig, N.; Redaelli, V.; Rosina, E.; Augelli, F. Moisture detection in wood and plaster by IR thermography. Infrared Phys. Technol. 2004, 46, 161–166. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB toolbox for contactless recognition of surface and shallow weakness of a rock cliff by infrared thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar] [CrossRef]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide mapping and characterization through infrared thermography (IRT): Suggestions for a methodological approach from some case studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.H.; Lin, H.M.; Lee, D.H.; Fang, S.C. Integrity assessment of rock mass behind the shotcreted slope using thermography. Eng. Geol. 2005, 80, 164–173. [Google Scholar]
- Hardgrove, C.; Moersch, J.; Whisner, S. Thermal imaging of sedimentary features on alluvial fans. Planet. Space Sci. 2010, 58, 482–508. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Fidolini, F.; Pazzi, V.; Fanti, R. Geomorphology of the Rotolon landslide (Veneto region, Italy). J. Maps 2014, 10, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography proposed for the estimation of the Cooling Rate Index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Solari, L.; Ciampalini, A.; Frodella, W.; Steri, D.; Allotta, B.; Rindi, A.; Marini, L.; Monni, N.; et al. Lava delta deformation as a proxy for submarine slope instability. Earth Planet. Sci. Lett. 2018, 488, 46–58. [Google Scholar] [CrossRef]
- Guerin, A.; Jaboyedoff, M.; Collins, B.D.; Derron, M.H.; Stock, G.M.; Matasci, B.; Boesiger, M.; Lefeuvre, C.; Podladchikov, Y.Y. Detection of rock bridges by infrared thermal imaging and modeling. Sci. Rep. 2019, 9, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Adikashvili, L.; Vacheishvili, N.; Kirkitadze, G.; Nadaraia, A.; Margottini, C.; Casagli, N. Combining InfraRed Thermography and UAV Digital Photogrammetry for the Protection and Conservation of Rupestrian Cultural Heritage Sites in Georgia: A Methodological Application. Remote Sens. 2020, 12, 892. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Lazzeri, G.; Moretti, S.; Keizer, J.; Verheijen, F.G. Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a High-Resolution 48 h Survey in a Vineyard (Anadia, Portugal). Sensors 2020, 20, 2444. [Google Scholar] [CrossRef] [PubMed]
- Frodella, W.; Elashvili, M.; Spizzichino, D.; Gigli, G.; Nadaraia, A.; Kirkitadze, G.; Adikashvili, L.; Margottini, C.; Antidze, N.; Casagli, N. Applying Close Range Non-Destructive Techniques for the Detection of Conservation Problems in Rock-Carved Cultural Heritage Sites. Remote Sens. 2021, 13, 1040. [Google Scholar] [CrossRef]
- FLIR Systems Inc. FLIR ThermaCAM SC620 Technical Specifications. 2009. Available online: www.flir.com/cs/emea/en/view/?id=41965 (accessed on 22 December 2022).
- FLIR Systems Inc. FLIR Tools + Datasheet. 2015. Available online: https://www.infraredcamerawarehouse.com/content/FLIR%20Datasheets/FLIR%20ToolsPlus%20Datasheet.pdf (accessed on 22 December 2022).
- ESRI Inc. ArcMap 10.1 Datasheet. 2012. Available online: https://www.esri.com/news/arcnews/spring12articles/introducing-arcgis-101.html (accessed on 1 October 2019).
- FLIR Systems Inc. ResearchIR 3.4. sp3. 2013. Available online: http://support.flir.com/DsDownload/Assets/T198206_en_40.pdf (accessed on 1 June 2022).
- Centro Funzionale Regione Toscana (CFR)—Termometria. Available online: https://www.cfr.toscana.it/index.php?IDS=42&IDSS=278 (accessed on 1 December 2022).
- Dassenakis, M.; Paraskevopoulou, V.; Cartalis, C.; Adaktilou, N.; Katsiabani, K. Remote sensing in coastal water monitoring: Applications in the eastern Mediterranean Sea (IUPAC Technical Report). Pure Appl. Chem. 2011, 84, 335–375. [Google Scholar] [CrossRef]
- Tebeau, P.A.; Etkin, D.S.; French-McCay, D.P. Cost-Benefit Analysis for Using Laser Fluorosensor for Detecting Heavy Oil; Coast Guard Research and Development Center: Groton, CT, USA, 2006. [Google Scholar]
- Lega, M.; Kosmatka, J.; Ferrara, C.; Russo, F.; Napoli, R.M.A.; Persechino, G. Using advanced aerial platforms and infrared thermography to track environmental contamination. Environ. Forensics 2012, 13, 332–338. [Google Scholar] [CrossRef]
- Aziz, N.A.A.; Aziz, K.A. Managing disaster with wireless sensor networks. In Proceedings of the 13th International Conference on Advanced Communication Technology (ICACT2011), Gangwon-Do, Republic of Korea, 13–16 February 2011; pp. 202–207. [Google Scholar]
- Erdelj, M.; Król, M.; Natalizio, E. Wireless sensor networks and multi-UAV systems for natural disaster management. Comput. Netw. 2017, 124, 72–86. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Gracchi, T.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Frodella, W.; Bertolini, G.; Carnevale, E.; Favalli, M.; et al. Application of an ultra-wide band sensor-free wireless network for ground monitoring. Eng. Geol. 2018, 238, 1–14. [Google Scholar] [CrossRef]
- ISRM. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [Google Scholar]
Spectral Range (µm) | Thermal Sensitivity (mK) | Sensor Spatial Resolution (mrad) | IR Resolution (pix) | Field of View (°) | Sensor-Target Distance (m) | Image Resolution (m) |
---|---|---|---|---|---|---|
7.5–13 | 40 | 0.65 | 640 × 480 | 24 × 18 | 250 (P1); 700 (P2); 800 (P3) | 1.6 (P1); 4.55 (P2); 5.20 (P3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frodella, W.; Rossi, G.; Tanteri, L.; Rosi, A.; Lombardi, L.; Mugnai, F.; Fanti, R.; Casagli, N. A Decade from the Costa Concordia Shipwreck: Lesson Learned on the Contribution of Infrared Thermography during the Maritime Salvage Operations. Remote Sens. 2023, 15, 1347. https://doi.org/10.3390/rs15051347
Frodella W, Rossi G, Tanteri L, Rosi A, Lombardi L, Mugnai F, Fanti R, Casagli N. A Decade from the Costa Concordia Shipwreck: Lesson Learned on the Contribution of Infrared Thermography during the Maritime Salvage Operations. Remote Sensing. 2023; 15(5):1347. https://doi.org/10.3390/rs15051347
Chicago/Turabian StyleFrodella, William, Guglielmo Rossi, Luca Tanteri, Ascanio Rosi, Luca Lombardi, Francesco Mugnai, Riccardo Fanti, and Nicola Casagli. 2023. "A Decade from the Costa Concordia Shipwreck: Lesson Learned on the Contribution of Infrared Thermography during the Maritime Salvage Operations" Remote Sensing 15, no. 5: 1347. https://doi.org/10.3390/rs15051347
APA StyleFrodella, W., Rossi, G., Tanteri, L., Rosi, A., Lombardi, L., Mugnai, F., Fanti, R., & Casagli, N. (2023). A Decade from the Costa Concordia Shipwreck: Lesson Learned on the Contribution of Infrared Thermography during the Maritime Salvage Operations. Remote Sensing, 15(5), 1347. https://doi.org/10.3390/rs15051347