Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data
Abstract
1. Introduction
2. Data
3. Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benson, R.F.; Bilitza, D. New satellite mission with old data: Rescuing a unique data set. Radio Sci. 2009, 44, RS0A04. [Google Scholar] [CrossRef]
- Heise, S.; Jakowski, N.; Wehrenpfennig, A.; Reigber, C.; Luhr, H. Sounding of the topside ionosphere/plasmasphere based on GPS measurements from CHAMP: Initial results. Geophys. Res. Lett. 2002, 29, 1699. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Kakinami, Y.; Watanabe, S.; Oyama, K.I. An empirical model of electron density in low latitude at 600 km obtained by Hinotori satellite. Adv. Space Res. 2008, 41, 1495–1499. [Google Scholar] [CrossRef]
- Lebreton, J.-P.; Stverak, S.; Travnicek, P.; Maksimovic, M.; Klinge, D.; Merikallio, S.; Lagoutte, D.; Poirier, B.; Blelly, P.-L.; Kozacek, Z.; et al. The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description, and first results. Planet. Space Sci. 2006, 54, 472–486. [Google Scholar] [CrossRef]
- de La Beaujardière, O.; Jeong, L.; the C/NOFS Science Definition team. C/NOFS: A mission to forecast scintillation. J. Atmos. Sol. Terr. Phys. 2004, 66, 1573–1591. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Singh, A.K.; Haralambous, H.; Oikonomou, C.; Leontiou, T. A topside investigation over a mid-latitude digisonde station in Cyprus. Adv. Space Res. 2021, 67, 739–748. [Google Scholar] [CrossRef]
- Haralambous, H.; Paul, K.S.; Gulyaeva, T.L. Topside investigation over Cyprus and Russia using Swarm data. In Proceedings of the 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC), Gran Canaria, Spain, 1–4 May 2022; IEEE: Piscataway, NJ, USA. [Google Scholar]
- Rishbeth, H.; Garriott, O.K. Introduction to Ionospheric Physics; Academic Press: New York, NY, USA, 1969; ISBN 13: 978-0125889407. [Google Scholar]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Sun, L.; Luo, W.; Park, J.; Hong, Y. Long-lasting latitudinal four-peak structure in the nighttime ionosphere observed by the Swarm constellation. J. Geophys. Res. 2019, 124, 9335–9347. [Google Scholar] [CrossRef]
- Cai, X.; Qian, L.; Wang, W.; McInerney, J.M.; Liu, H.-L.; Eastes, R.W. Investigation of the post-sunset extra electron density peak poleward of the equatorial ionization anomaly southern crest. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030755. [Google Scholar] [CrossRef]
- Cander, L.R.; Haralambous, H. On the importance of total electron content enhancements during the extreme solar minimum. Adv. Space Res. 2011, 47, 304–311. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Smirnov, A.; Shprits, Y.; Zhelavskaya, I.; Lühr, H.; Xiong, C.; Goss, A.; Prol, F.S.; Schmidt, M.; Hoque, M.; Pedatella, N.; et al. Intercalibration of the plasma density measurements in Earth’s topside ionosphere. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029334. [Google Scholar] [CrossRef]
- Larson, B.; Koustov, A.V.; Kouznetsov, A.F.; Lomidze, L.; Gillies, R.G.; Reimer, A.S. A comparison of the topside electron density measured by the Swarm satellites and incoherent scatter radars over Resolute Bay, Canada. Radio Sci. 2021, 56, e2021RS007326. [Google Scholar] [CrossRef]
- Liu, J.; Guan, Y.; Zhang, X.; Shen, X. The data comparison of electron density between CSES and DEMETER satellite, Swarm constellation and IRI model. Earth Space Sci. 2021, 8, e2020EA001475. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coisson, P. On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height through COSMIC/FORMOSAT-3 Selected Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Singh, A.K.; Haralambous, H.; Oikonomou, C. Validation and improvement of NeQuick topside ionospheric formulation using COSMIC/FORMOSAT-3 data. J. Geophys. Res. Space Phys. 2020, 126, e2020JA028720. [Google Scholar] [CrossRef]
- Oyama, K.L. DC Langmuir probe for measurement of space plasma: A brief review. Astron. Space Sci. 2015, 32, 167–180. [Google Scholar] [CrossRef]
- Catapano, F.; Buchert, S.; Qamili, E.; Nilsson, T.; Bouffard, J.; Siemes, C.; Coco, I.; D’Amicis, R.; Tøffner-Clausen, L.; Trenchi, L.; et al. Swarm Langmuir probes’ data quality validation and future improvements. Geosci. Instrum. Methods Data Syst. 2022, 11, 149–162. [Google Scholar] [CrossRef]
- Xiong, C.; Jiang, H.; Yan, R.; Lühr, H.; Stolle, C.; Yin, F.; Smirnov, A.; Piersanti, M.; Liu, Y.; Wan, X.; et al. Solar flux influence on the in-situ plasma density at topside ionosphere measured by Swarm satellites. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030275. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Coco, I.; Piersanti, M.; Giannattasio, F.; De Michelis, P.; Tozzi, R.; Consolini, G. Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission. Remote Sens. 2022, 14, 4679. [Google Scholar] [CrossRef]
Year | Nicosia | Moscow | ||
---|---|---|---|---|
Swarm A | Swarm B | Swarm A | Swarm B | |
2014 | N.A. | N.A. | N.A. | N.A. |
2015 | N.A. | 1.02% | N.A. | 1.45% |
2016 | 0.49% | 2.51% | 1.32% | 1.16% |
2017 | 2.06% | 4.49% | N.A. | N.A. |
2019 | 15.13% | 12.5% | 1.56% | 1.54% |
2020 | 14.05% | 11.34% | N.A. | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haralambous, H.; Paul, K.S.; Singh, A.K.; Gulyaeva, T. Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data. Remote Sens. 2023, 15, 1344. https://doi.org/10.3390/rs15051344
Haralambous H, Paul KS, Singh AK, Gulyaeva T. Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data. Remote Sensing. 2023; 15(5):1344. https://doi.org/10.3390/rs15051344
Chicago/Turabian StyleHaralambous, Haris, Krishnendu Sekhar Paul, Arun Kumar Singh, and Tamara Gulyaeva. 2023. "Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data" Remote Sensing 15, no. 5: 1344. https://doi.org/10.3390/rs15051344
APA StyleHaralambous, H., Paul, K. S., Singh, A. K., & Gulyaeva, T. (2023). Investigation of the Topside Ionosphere over Cyprus and Russia Using Swarm Data. Remote Sensing, 15(5), 1344. https://doi.org/10.3390/rs15051344