General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing of G5U Scheme
2.2. General 5-Component Scattering Power Decomposition with Unitary Transformation (G5U)
2.3. Branch Condition
2.4. Branch Condition
2.5. Flowchart of G5U
3. Results
3.1. L-Band Mumbai Dataset
3.2. L-Band Mexico City Dataset
3.3. L-Band San Francisco Dataset
3.4. Ahmedabad City Dataset
3.5. L-Band and S-Band F-SAR PolSAR Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging from Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 3–9. [Google Scholar]
- Yamaguchi, Y. Polarimetric SAR Imaging: Theory to Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 2–9. ISBN 978-0-367-47831-5. [Google Scholar]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 693–973. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A. Fitting a Two-Component Scattering Model to Polarimetric SAR Data from Forests. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2583–2592. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A four-component decomposition of POLSAR images based on the coherency matrix. IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Lee, J.S.; Ainsworth, T.L.; Wang, Y. Generalized polarimetric model-based decompositions using incoherent scattering models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2474–2491. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y. Model-based six-component scattering matrix power decomposition. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5687–5704. [Google Scholar] [CrossRef]
- Singh, G.; Malik, R.; Mohanty, S.; Rathore, V.S.; Yamada, K.; Umemura, M.; Yamaguchi, Y. Seven-component scattering power decomposition of POLSAR coherency matrix. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8371–8372. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.M.; Sato, R.; Yamada, H. Four-component scattering power decomposition with rotation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S.-E. Four-component scattering power decomposition with extended volume scattering model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [Google Scholar] [CrossRef]
- Singh, G.; Yamaguchi, Y.; Park, S.-E. General four-component scattering power decomposition with unitary transformation of coherency matrix. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3014–3022. [Google Scholar] [CrossRef]
- Singh, G.; Mohanty, S.; Yamazaki, Y.; Yamaguchi, Y. Physical scattering interpretation of POLSAR coherency matrix by using compound scattering phenomenon. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2541–2556. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R.K. Investigation of branching conditions in model-based decomposition methods. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1224–1228. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R.K. PolSAR coherency matrix optimization through selective unitary rotations for model-based decomposition scheme. IEEE Geosci. Remote Sens. Lett. 2019, 16, 658–662. [Google Scholar] [CrossRef]
- Yang, J.; Yamaguchi, Y.; Lee, J.-S.; Touzi, R.; Boerner, W.-M. Applications of polarimetric SAR. J. Sens. 2015, 2015, 316391. [Google Scholar] [CrossRef]
- Lee, J.S.; Grunes, M.R.; Pottier, E.; Famil, L.F. Unsupervised terrain classification preserving polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. [Google Scholar]
- Priyanka, R.; Avtar, R.; Malik, R.; Musthafa, M.; Rathore, V.S.; Kumar, P.; Singh, G. Forest plantation species classification using Full-Pol-Time-Averaged SAR scattering powers. Remote Sens. Appl. Soc. Environ. 2023, 29, 100924. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, R.; Singh, G.; Dikshit, O.; Yamaguchi, Y. General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix. Remote Sens. 2023, 15, 1332. https://doi.org/10.3390/rs15051332
Malik R, Singh G, Dikshit O, Yamaguchi Y. General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix. Remote Sensing. 2023; 15(5):1332. https://doi.org/10.3390/rs15051332
Chicago/Turabian StyleMalik, Rashmi, Gulab Singh, Onkar Dikshit, and Yoshio Yamaguchi. 2023. "General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix" Remote Sensing 15, no. 5: 1332. https://doi.org/10.3390/rs15051332
APA StyleMalik, R., Singh, G., Dikshit, O., & Yamaguchi, Y. (2023). General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix. Remote Sensing, 15(5), 1332. https://doi.org/10.3390/rs15051332