Refined Estimation of Potential GDP Exposure in Low-Elevation Coastal Zones (LECZ) of China Based on Multi-Source Data and Random Forest
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Data Source and Preprocessing
2.2. Methodology
2.2.1. RF Model Fitting
2.2.2. Dasymetric Mapping
2.2.3. LECZ Extraction
3. Results
3.1. Accuracy Assessment of New GDP Datasets
3.2. Total-GDP Exposure in the LECZ
3.3. GDP Exposure by Sector in LECZ
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coastal. Res. 2003, 19, 584–599. [Google Scholar]
- Martinez, M.L.; Intralawan, A.; Vazquez, G.; Perez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Skjelvan, I.; Lauvset, S.K.; Johannessen, T.; Gundersen, K.; Skagseth, O. Decadal trends in Ocean Acidification from the Ocean Weather Station M in the Norwegian Sea. J. Marine. Syst. 2022, 234, 103775. [Google Scholar] [CrossRef]
- Khan, S.A.; Choi, Y.; Morlighem, M.; Rignot, E.; Helm, V.; Humbert, A.; Mouginot, J.; Millan, R.; Kjær, K.H.; Bjørk, A.A. Extensive inland thinning and speed-up of Northeast Greenland Ice Stream. Nature 2022, 611, 727–732. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Exposure of developing countries to sea-level rise and storm surges. Clim. Change 2011, 106, 567–579. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.E.; Bakker, A.M.; Keller, K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Change 2017, 144, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Batibeniz, F.; Ashfaq, M.; Diffenbaugh, N.S.; Key, K.; Evans, K.J.; Turuncoglu, U.U.; Onol, B. Doubling of US Population Exposure to Climate Extremes by 2050. Earths Future 2020, 8, e2019EF001421. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones (June, pg 1517, 2007). Science 2010, 329, 628. [Google Scholar] [CrossRef]
- Lv, Y.; Li, W.; Wen, J.; Xu, H.; Du, S. Population pattern and exposure under sea level rise: Low elevation coastal zone in the Yangtze River Delta, 1990–2100. Clim. Risk Manag. 2021, 33, 100348. [Google Scholar] [CrossRef]
- Lichter, M.; Vafeidis, A.T.; Nicholls, R.J.; Kaiser, G. Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the “Low-Elevation Coastal Zone” (LECZ). J. Coast. Res. 2011, 27, 757–768. [Google Scholar] [CrossRef]
- Mondal, P.; Tatem, A.J. Uncertainties in Measuring Populations Potentially Impacted by Sea Level Rise and Coastal Flooding. PLoS ONE 2012, 7, e48191. [Google Scholar] [CrossRef]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [Green Version]
- Geiger, T.; Frieler, K.; Bresch, D.N. A global historical data set of tropical cyclone exposure (TCE-DAT). Earth Syst. Sci. Data 2018, 10, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, H.V.; Oehlers, M.; Moreno-Monroy, A.I.; Kropp, J.P.; Rybski, D. Association between population distribution and urban GDP scaling. PLoS ONE 2021, 16, e0245771. [Google Scholar] [CrossRef] [PubMed]
- Un-Habitat. State of the World’s Cities 2008/9: Harmonious Cities; Routledge: England, UK, 2012. [Google Scholar]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Sci. Rep. 2020, 10, 11629. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, I.; Strobl, E. Economic development and losses due to natural disasters: The role of hazard exposure. Ecol. Econ. 2011, 72, 97–105. [Google Scholar] [CrossRef]
- Kadri, F.; Birregah, B.; Chatelet, E. The Impact of Natural Disasters on Critical Infrastructures: A Domino Effect-based Study. J. Homel. Secur. Emerg. 2014, 11, 217–241. [Google Scholar] [CrossRef]
- Kellenberg, D.K.; Mobarak, A.M. Does rising income increase or decrease damage risk from natural disasters? J. Urban Econ. 2008, 63, 788–802. [Google Scholar] [CrossRef]
- Jia, P.; Sankoh, O.; Tatem, A.J. Mapping the environmental and socioeconomic coverage of the INDEPTH international health and demographic surveillance system network. Health Place 2015, 36, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandbergen, P.A.; Ignizio, D.A. Comparison of Dasymetric Mapping Techniques for Small-Area Population Estimates. Cart. Geogr. Inf. Sci. 2010, 37, 199–214. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote. Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, G.H.; Ge, Y.; Xu, Z.K. Mapping Gridded Gross Domestic Product Distribution of China Using Deep Learning With Multiple Geospatial Big Data. IEEE J.-Stars 2022, 15, 1791–1802. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, T.T.; Zhao, N.Z.; Ding, M.J.; Ouyang, Z.T.; Jia, P.; Yue, W.Z.; Yang, X.C. Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest. Env. Plan. B-Urban 2021, 48, 1876–1894. [Google Scholar] [CrossRef]
- Keola, S.; Andersson, M.; Hall, O. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Bovkir, R.; Aydinoglu, A.C. Spatial distribution of GDP based on integrated NPS-VIIRS nighttime light and MODIS EVI data: A case study of Turkey. Env. Dev. Sustain. 2021, 23, 10309–10343. [Google Scholar] [CrossRef]
- Yi, J.W.; Du, Y.Y.; Liang, F.Y.; Tu, W.N.; Qi, W.; Ge, Y. Mapping human’s digital footprints on the Tibetan Plateau from multi-source geospatial big data. Sci. Total. Environ. 2020, 711, 134540. [Google Scholar] [CrossRef]
- Kummu, M.; Taka, M.; Guillaume, J. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Guo, Z.; Wu, J.; Chen, Z. GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Adv. Space Res. 2020, 65, 481–493. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, G.; Wei, Z.; Samson, E.L. Tweets or nighttime lights: Comparison for preeminence in estimating socioeconomic factors. ISPRS J. Photogramm. Remote Sens. 2018, 146, 1–10. [Google Scholar] [CrossRef]
- Murakami, D.; Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 2019, 11, 2106. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.T.; Sutton, P.C.; Qi, B.X. Global Mapping of GDP at 1 km(2) Using VIIRS Nighttime Satellite Imagery. Isprs. Int. Geo. Inf. 2019, 8, 580. [Google Scholar] [CrossRef] [Green Version]
- CIESIN: Center for International Earth Science Information Network, Columbia University. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 2; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2013. [Google Scholar]
- Yang, X.; Yao, C.; Chen, Q.; Ye, T.; Jin, C. Improved Estimates of Population Exposure in Low-Elevation Coastal Zones of China. Int. J. Environ. Res. Public Health 2019, 16, 4012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [Google Scholar] [CrossRef]
- Chen, Y.-C. A tutorial on kernel density estimation and recent advances. Biostat. Epidemiol. 2017, 1, 161–187. [Google Scholar] [CrossRef]
- Lin, A.N.; Sun, X.M.; Wu, H.; Luo, W.T.; Wang, D.Y.; Zhong, D.T.; Wang, Z.M.; Zhao, L.T.; Zhu, J. Identifying Urban Building Function by Integrating Remote Sensing Imagery and POI Data. IEEE J.-Stars 2021, 14, 8864–8875. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Yu, B.L.; Yang, C.S.; Zhou, Y.Y.; Yao, S.J.; Qian, X.J.; Wang, C.X.; Wu, B.; Wu, J.P. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Yang, X.; Ruby Leung, L.; Zhao, N.; Zhao, C.; Qian, Y.; Hu, K.; Liu, X.; Chen, B. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophys. Res. Lett. 2017, 44, 6940–6950. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; Volume 2. [Google Scholar]
- Ye, T.T.; Zhao, N.Z.; Yang, X.C.; Ouyang, Z.T.; Liu, X.P.; Chen, Q.; Hu, K.J.; Yue, W.Z.; Qi, J.G.; Li, Z.S.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, Y.; Yang, X.; Zhao, N.; Ouyang, Z.; Yue, W. Mapping China’s electronic power consumption using points of interest and remote sensing data. Remote Sens. 2021, 13, 1058. [Google Scholar] [CrossRef]
- Bajat, B.; Krunic, N.; Petrovic, M.S.; Kilibarda, M. Dasymetric Modelling of Population Dynamics in Urban Areas. Geod. Vestn. 2013, 57, 777–792. [Google Scholar] [CrossRef]
- Jia, P.; Gaughan, A.E. Dasymetric modeling: A hybrid approach using land cover and tax parcel data for mapping population in Alachua County, Florida. Appl. Geogr. 2016, 66, 100–108. [Google Scholar] [CrossRef]
- Ye, M.Q.; Wu, J.D.; Wang, C.L.; He, X. Historical and Future Changes in Asset Value and GDP in Areas Exposed to Tropical Cyclones in China. Weather Clim. Soc. 2019, 11, 307–319. [Google Scholar] [CrossRef]
- Liu, J.; Wen, J.; Huang, Y.; Shi, M.; Meng, Q.; Ding, J.; Xu, H.J.M.; Change, A.S.f.G. Human settlement and regional development in the context of climate change: A spatial analysis of low elevation coastal zones in China. Mitig. Adapt. Strat. Glob. Chang. 2015, 20, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Han, S.S.; Yan, Z.X. China’s coastal cities: Development, planning and challenges. Habitat Int. 1999, 23, 217–229. [Google Scholar] [CrossRef]
- Tacoli, C.; McGranahan, G. Urbanisation, Rural-Urban Migration and Urban Poverty; International Institute for Environment and Development (IIED): London, UK, 2015; pp. 13–15. [Google Scholar]
- Felsenstein, D.; Lichter, M. Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Nat. Hazards 2014, 71, 463–491. [Google Scholar] [CrossRef]
- McEntire, D. Understanding and reducing vulnerability: From the approach of liabilities and capabilities. Disaster Prev. Manag 2012, 21, 206–225. [Google Scholar] [CrossRef]
- Marin, G.; Modica, M. Socio-economic exposure to natural disasters. Environ. Impact Assess. Rev. 2017, 64, 57–66. [Google Scholar] [CrossRef]
- Benson, C.; Clay, E.J. Understanding the Economic and Financial Impacts of Natural Disasters; World Bank Publications: Washington, DC, USA, 2004. [Google Scholar]
- Hochard, J.P.; Hamilton, S.; Barbier, E.B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. USA 2019, 116, 12232–12237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataur Rahman, M.; Rahman, S. Natural and traditional defense mechanisms to reduce climate risks in coastal zones of Bangladesh. Weather Clim. Extrem. 2015, 7, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Milazzo, M.F.; Ancione, G.; Salzano, E.; Maschio, G. Risks associated with volcanic ash fallout from Mt.Etna with reference to industrial filtration systems. Reliab. Eng. Syst. Safe 2013, 120, 106–110. [Google Scholar] [CrossRef]
- Stern, N.; Stern, N.H. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gable, F.J. Climate change impacts on Caribbean coastal areas and tourism. J. Coast. Res. 1997, 27, 49–69. [Google Scholar]
- Walz, R.; Schleich, J. The Economics of Climate Change Policies: Macroeconomic Effects, Structural Adjustments and Technological Change; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Brandt, L.; Thun, E. Constructing a Ladder for Growth: Policy, Markets, and Industrial Upgrading in China. World Dev. 2016, 80, 78–95. [Google Scholar] [CrossRef]
- Ang, Y.Y. Domestic Flying Geese: Industrial Transfer and Delayed Policy Diffusion in China. China Q. 2018, 234, 420–443. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Irfan, M.; Hao, Y. How does industrial transfer affect environmental quality? Evidence from China. J. Asian Econ. 2022, 82, 101530. [Google Scholar] [CrossRef]
- Houkai, W.; Xiaoxia, W. China’s Regional Policy Scenarios for 2011-2015 Period. China Econ. 2012, 7, 90. [Google Scholar]
- Li, J.; Li, M.; Gao, Y.; Li, J.; Su, H.; Huang, M. Regional level: New landscape of competition and cooperation among regions in China. In China’s Provincial Economic Competitiveness and Policy Outlook for the 13th Five-Year Plan Period (2016–2020); Springer: Berlin/Heidelberg, Germany, 2018; pp. 135–162. [Google Scholar]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
Year | R2 | MAE | RMSE | |
---|---|---|---|---|
GDP1 | 2010 | 0.54 | 0.39 | 0.57 |
2019 | 0.44 | 0.45 | 0.66 | |
GDP2 | 2010 | 0.85 | 0.46 | 0.60 |
2019 | 0.85 | 0.52 | 0.70 | |
GDP3 | 2010 | 0.93 | 0.33 | 0.43 |
2019 | 0.95 | 0.31 | 0.42 |
Administrative District a | LECZ (×103 km2) | Percentage of LECZ b (%) | 2010 | 2019 | ||
---|---|---|---|---|---|---|
GDP of LECZ (Billion CNY) | Percentage of GDP (%) c | GDP of LECZ (Billion CNY) | Percentage of GDP (%) c | |||
Liaoning | 11.91 | 8.21 | 298.4 | 16.2 | 377.7 | 15.2 |
Hebei | 19.43 | 10.39 | 292.8 | 14.4 | 534.7 | 15.2 |
Tianjin | 10.37 | 89.40 | 953.2 | 93.8 | 1313.6 | 93.1 |
Shandong | 19.98 | 13.02 | 549.0 | 14.0 | 1025.6 | 14.4 |
Jiangsu | 69.80 | 69.31 | 2762.9 | 66.7 | 6573.7 | 66.0 |
Shanghai | 6.59 | 99.04 | 1580.3 | 92.1 | 3392.6 | 88.9 |
Zhejiang | 18.26 | 17.97 | 1633.9 | 58.9 | 3739.3 | 60.0 |
Fujian | 3.69 | 3.06 | 388.4 | 26.4 | 1117.4 | 26.4 |
Guangdong | 20.09 | 11.41 | 1837.0 | 39.9 | 4125.8 | 38.3 |
Guangxi | 1.57 | 0.66 | 25.8 | 2.7 | 67.0 | 3.2 |
Hainan | 2.08 | 6.18 | 42.2 | 20.4 | 122.5 | 23.1 |
China | 183.78 | 1.91 | 10,363.8 | 25.2 | 22,389.8 | 22.7 |
Exposure Element | 2010 | 2019 | ||||
---|---|---|---|---|---|---|
Exposed GDP (Billion CNY)/Population | Percentage of LECZ (%) | Percentage of National Total (%) | Exposed GDP (Billion CNY)/Population | Percentage of LECZ (%) | Percentage of National Total (%) | |
GDP1 | 421.1 | 4.1 | 11. 2 | 664.0 | 3.0 | 9.4 |
GDP2 | 5569.0 | 53.7 | 29.1 | 9408.6 | 42.0 | 24.7 |
GDP3 | 4373.7 | 42.2 | 24.0 | 12,317.2 | 55.0 | 23.0 |
total-GDP | 10,363.8 | 100 | 24.02 | 22,389.8 | 100 | 22.7 |
Landscan | 180,614,045 | / | 13.6 | 211,289,372 | / | 14.9 |
Yang et al. [38] | 158,208,732 | / | 12.7 | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Mao, L.; Chen, Q.; Yang, X. Refined Estimation of Potential GDP Exposure in Low-Elevation Coastal Zones (LECZ) of China Based on Multi-Source Data and Random Forest. Remote Sens. 2023, 15, 1285. https://doi.org/10.3390/rs15051285
Li F, Mao L, Chen Q, Yang X. Refined Estimation of Potential GDP Exposure in Low-Elevation Coastal Zones (LECZ) of China Based on Multi-Source Data and Random Forest. Remote Sensing. 2023; 15(5):1285. https://doi.org/10.3390/rs15051285
Chicago/Turabian StyleLi, Feixiang, Liwei Mao, Qian Chen, and Xuchao Yang. 2023. "Refined Estimation of Potential GDP Exposure in Low-Elevation Coastal Zones (LECZ) of China Based on Multi-Source Data and Random Forest" Remote Sensing 15, no. 5: 1285. https://doi.org/10.3390/rs15051285
APA StyleLi, F., Mao, L., Chen, Q., & Yang, X. (2023). Refined Estimation of Potential GDP Exposure in Low-Elevation Coastal Zones (LECZ) of China Based on Multi-Source Data and Random Forest. Remote Sensing, 15(5), 1285. https://doi.org/10.3390/rs15051285