Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recovery of the GCC
2.2. Ground Tracking Network
2.3. Processing Strategy
Solution | SRP Parameters | A Priori Physical Model |
---|---|---|
ECOM | - | |
ECOM2 | - | |
BW + ECOM | Duan et al. [37] for PRNs C06–C37 Zhao et al. [20] for PRNs C38–C46 |
3. Results
3.1. Impact of Different SRP Models on the GCC-Z
3.2. Impact of the Constellation Configuration on the GCC-Z
3.3. Comparison with External Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BDS | BeiDou Navigation Satellite System |
BW + ECOM | A priori Box-Wing Along with the ECOM model |
CAST | China Academy of Space Technology |
CDDIS | Crustal Dynamics Data Information System |
CF | Center-of-Figure |
CM | Center-of-Mass |
CODE | Center for Orbit Determination in Europe |
ECOM | Empirical CODE Orbit Model |
ECOM2 | Extended ECOM Model |
GCC | Geocenter Coordinates |
GEO | Geostationary Earth Orbit |
GNSS | Global Navigation Satellite System |
GRACE | Gravity Recovery and Climate Experiment |
IERS | International Earth Rotation and Reference Systems Service |
IF | Ionosphere-Free |
IGS | International GNSS Service |
IGSO | Inclined Geosynchronous Orbit |
ILRS | International Laser Ranging Service |
ITRF | International Terrestrial Reference Frame |
KALREF | A Kalman Filter and Time Series Approach to the ITRF Realization |
LAGEOS | Laser Geodynamics Satellite |
MEO | Medium Earth Orbit |
NNR | No-Net-Rotation |
NNT | No-Net-Translation |
PRN | Pseudo Random Noise Code |
RMS | Root Mean Square |
SECM | Shanghai Engineering Center for Microsatellites |
SLR | Satellite Laser Ranging |
SRP | Solar Radiation Pressure |
STD | Standard Deviation |
ZTD | Zenith Tropospheric Delay |
References
- IERS. IERS Conventions 2010: IERS Technical Note 36; Petit, G., Luzum, B., Eds.; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2011. [Google Scholar]
- Lavallée, D.A.; van Dam, T.; Blewitt, G.; Clarke, P.J. Geocenter motions from GPS: A unified observation model. J. Geophys. Res. Solid Earth 2006, 111, 3784. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Tapley, B.; Chen, J.; Ries, J.; Bettadpur, S. Geocenter variations derived from GPS tracking of the GRACE satellites. J. Geod. 2009, 83, 895–901. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D.; Clarke, P.; Nurutdinov, K. A New Global Mode of Earth Deformation: Seasonal Cycle Detected. Science 2001, 294, 2342–2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Ray, J.; van Dam, T. Geocenter motion and its geodetic and geophysical implications. J. Geodyn. 2012, 58, 44–61. [Google Scholar] [CrossRef]
- Zannat, U.J.; Tregoning, P. Estimating network effect in geocenter motion: Theory. J. Geophys. Res. Solid Earth 2017, 122, 8360–8375. [Google Scholar] [CrossRef]
- Kosek, W.; Popiński, W.; Wnęk, A.; Sośnica, K.; Zbylut-Górska, M. Analysis of Systematic Errors in Geocenter Coordinates Determined From GNSS, SLR, DORIS, and GRACE. Pure Appl. Geophys. 2020, 177, 867–888. [Google Scholar] [CrossRef] [Green Version]
- Mendes, V.B.; Pavlis, E.C. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 2004, 31, 308. [Google Scholar] [CrossRef] [Green Version]
- Spatar, C.B.; Moore, P.; Clarke, P.J. Collinearity assessment of geocentre coordinates derived from multi-satellite SLR data. J. Geod. 2015, 89, 1197–1216. [Google Scholar] [CrossRef] [Green Version]
- Sośnica, K.; Thaller, D.; Dach, R.; Jäggi, A.; Beutler, G. Impact of loading displacements on SLR-derived parameters and on the consistency between GNSS and SLR results. J. Geod. 2013, 87, 751–769. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Kuang, D.; Bar-Sever, Y.; Haines, B. Analysis of orbital configurations for geocenter determination with GPS and low-Earth orbiters. J. Geod. 2015, 89, 471–481. [Google Scholar] [CrossRef]
- Meindl, M.; Beutler, G.; Thaller, D.; Dach, R.; Jäggi, A. Geocenter coordinates estimated from GNSS data as viewed by perturbation theory. Adv. Space Res. 2013, 51, 1047–1064. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Springer, T. A collinearity diagnosis of the GNSS geocenter determination. J. Geod. 2014, 88, 65–85. [Google Scholar] [CrossRef]
- Hugentobler, U.; Van der Marel, H.; Springer, T. Identification and mitigation of GNSS errors. In Proceedings of the IGS 2006 Workshop, Darmstadt, Gemany, 8–12 May 2006. [Google Scholar]
- Bury, G.; Zajdel, R.; Sośnica, K. Accounting for perturbing forces acting on Galileo using a box-wing model. GPS Solut. 2019, 23, 74. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P.; Bloßfeld, M.; Fritsche, M. Reducing the draconitic errors in GNSS geodetic products. J. Geod. 2014, 88, 559–574. [Google Scholar] [CrossRef]
- Lutz, S.; Meindl, M.; Steigenberger, P.; Beutler, G.; Sośnica, K.; Schaer, S.; Dach, R.; Arnold, D.; Thaller, D.; Jäggi, A. Impact of the arc length on GNSS analysis results. J. Geod. 2016, 90, 365–378. [Google Scholar] [CrossRef]
- Zajdel, R.; Sośnica, K.; Dach, R.; Bury, G.; Prange, L.; Jäggi, A. Network Effects and Handling of the Geocenter Motion in Multi-GNSS Processing. J. Geophys. Res. Solid Earth 2019, 124, 5970–5989. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Guo, J.; Wang, C.; Lyu, Y.; Xu, X.; Yang, C.; Li, J. Precise orbit determination for BDS satellites. Satell. Navig. 2022, 3, 2. [Google Scholar] [CrossRef]
- Fritsche, M.; Dietrich, R.; Rülke, A.; Rothacher, M.; Steigenberger, P. Low-degree earth deformation from reprocessed GPS observations. GPS Solut. 2010, 14, 165–175. [Google Scholar] [CrossRef]
- Dong, D.; Yunck, T.; Heflin, M. Origin of the International Terrestrial Reference Frame. J. Geophys. Res. Solid Earth 2003, 108, 2035. [Google Scholar] [CrossRef]
- Cheng, M.K.; Ries, J.C.; Tapley, B.D. Geocenter Variations from Analysis of SLR Data. In Proceedings of the Reference Frames for Applications in Geosciences, Berlin/Heidelberg, Germany, 4–8 October 2010; Springer: Berlin/Heidelberg, Germany; pp. 19–25. [Google Scholar]
- Li, X.; Yuan, Y.; Zhu, Y.; Huang, J.; Wu, J.; Xiong, Y.; Zhang, X.; Li, X. Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks. J. Geod. 2019, 93, 103–117. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Ge, M. Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J. Geod. 2011, 85, 151–158. [Google Scholar] [CrossRef]
- Johnston, G.; Riddell, A.; Hausler, G. The International GNSS Service. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J.G., Montenbruck, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 967–982. [Google Scholar]
- Li, X.; Han, X.; Li, X.; Liu, G.; Feng, G.; Wang, B.; Zheng, H. GREAT-UPD: An open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations. GPS Solut. 2021, 25, 66. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Zhang, K.; Yuan, Y.; Zhang, W.; Qin, Y. Earth Rotation Parameters Estimation Using GPS and SLR Measurements to Multiple LEO Satellites. Remote Sens. 2021, 13, 3046. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Wu, J.; Yuan, Y.; Xiong, Y.; Gong, X.; Wu, Z. Multi-GNSS products and services at iGMAS Wuhan Innovation Application Center: Strategy and evaluation. Satell. Navig. 2022, 3, 20. [Google Scholar] [CrossRef]
- Standish, E.M. JPL Planetary and Lunar Ephemerides, DE405/LE405. Interoffice Memorandum: JPL IOM 312.F-98-048, 26 August 1998. Available online: https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/de405.iom.pdf (accessed on 1 January 2023).
- Lyard, F.; Allain, D.; Cancet, M.; Carrere, L.; Picot, N. FES2014 global ocean tide atlas: Design and performance. Ocean Sci. 2021, 17, 615–649. [Google Scholar] [CrossRef]
- Rebischung, P.; Altamimi, Z.; Ray, J.; Garayt, B. The IGS contribution to ITRF2014. J. Geod. 2016, 90, 611–630. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. In The Use of Artificial Satellites for Geodesy; Geophysical Monograph Series; North Holland Publishing Co.: Amsterdam, The Netherlands, 1972; pp. 247–251. [Google Scholar]
- Springer, T.A.; Beutler, G.; Rothacher, M. Improving the orbit estimates of GPS satellites. J. Geod. 1999, 73, 147–157. [Google Scholar] [CrossRef]
- Milani, A.; Nobili, A.M.; Farinella, P. Non-Gravitational Perturbations and Satellite Geodesy; Taylor & Francis Ltd.: London, UK, 1987. [Google Scholar]
- Fliegel, H.F.; Gallini, T.E.; Swift, E.R. Global Positioning System Radiation Force Model for geodetic applications. J. Geophys. Res. Solid Earth 1992, 97, 559–568. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Selmke, I.; Marz, S.; Killian, M.; Rott, M. BeiDou Satellite Radiation Force Models for Precise Orbit Determination and Geodetic Applications. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 2823–2836. [Google Scholar] [CrossRef]
- Zajdel, R.; Sośnica, K.; Bury, G. Geocenter coordinates derived from multi-GNSS: A look into the role of solar radiation pressure modeling. GPS Solut. 2020, 25, 1. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Noll, C.E.; Pavlis, E.C.; Lemoine, F.G.; Combrink, L.; Degnan, J.J.; Kirchner, G.; Schreiber, U. The ILRS: Approaching 20 years and planning for the future. J. Geod. 2019, 93, 2161–2180. [Google Scholar] [CrossRef]
- Dach, R.; Schaer, S.; Arnold, D.; Orliac, E.; Prange, L.; Sidorov, S.; Sušnik, A.; Villiger, A.; Mervarta, L.; Jäggi, A.J.I.C.B. Center for Orbit Determination in Europe (CODE) Technical Report 2016; University of Bern: Bern, Switzerland, 2019; p. 27. [Google Scholar]
- Wu, X.; Kusche, J.; Landerer, F.W. A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data. Geophys. J. Int. 2017, 209, 1398–1402. [Google Scholar] [CrossRef]
- Vondrák, J. A contribution to the problem of smoothing observational data. BAICz 1969, 20, 349. [Google Scholar]
- Yang, H.; Xu, T.; Nie, W.; Gao, F.; Guan, M. Precise Orbit Determination of BDS-2 and BDS-3 Using SLR. Remote Sens. 2019, 11, 2735. [Google Scholar] [CrossRef] [Green Version]
General Items | Processing Strategy |
---|---|
Time span | 1 January 2019–31 December 2021 |
Observation equation | Undifferenced ionosphere-free combination (B1I + B3I) |
Observation sampling | 300 s |
Arc length | 3 day |
Cut-off elevation | 7° |
Earth gravity | EGM2008 (12 × 12) |
N-body gravity | JPL DE405 [30] |
Ocean tide | FES2014 [31] |
Solid tide and pole tide | IERS 2010 [1] |
Relativity | IERS 2010 |
Earth radiation pressure | Not considered |
A priori reference frame | IGS realization of ITRF2014 [32] |
Station coordinates | Estimated with minimum constraints (NNT and NNR) on core stations (denoted as red stars in Figure 1) |
Geocenter coordinates | Estimated with a constraint of 0.1 m |
Satellite state vector | Position and velocity parameters at the initial epoch |
Zenith tropospheric delay (ZTD) | Saastamoinen model [33]; 2 h ZTD and 24 h ZTD gradients are estimated as piecewise constants |
Receiver and satellite clocks | Epoch-wise estimated as white noise |
Ambiguities | Double-differenced ambiguities estimated for each continuous arc |
Solar radiation model | 5-parameter Empirical CODE Orbit Model (ECOM); 7-parameter Extended ECOM Model (ECOM2); A priori Box-Wing Along with the ECOM Model (BW + ECOM) |
Constellation configuration | MEO-only; MEO + IGSO |
BDS-2 | BDS-3 | |||||
---|---|---|---|---|---|---|
Manufacturer PRN | CAST C06–C10, C13, C16 | CAST C11, C12, C14 | SECM C25–C30, C34, C35 | CAST C19–C24 | CAST C32–C33 | CAST C36–C37 |
+X | ||||||
0.253 | 0.022 | 0.603 | 0.604 | 0.665 | 0.492 | |
0.556 | 0.777 | 0.373 | 0.327 | 0.045 | 0.383 | |
+Z | ||||||
0.231 | 0.113 | 0.308 | 0.121 | 0.321 | 0.212 | |
0.608 | 0.664 | 0.668 | 0.710 | 0.524 | 0.847 | |
−Z | ||||||
0.393 | 0.378 | 0.649 | 0.001 | 0.034 | 0.001 | |
0.564 | 0.614 | 0.281 | 0.893 | 0.796 | 1.072 | |
Solar panel | ||||||
0.272 | 0.265 | 0.132 | 0.130 | 0.161 | 0.135 | |
0.720 | 0.720 | 0.920 | 0.920 | 0.920 | 0.920 |
Manufacturer PRN | CAST C38–C40 | CAST C41–C42, C45–C46 | SECM C43–C44 |
---|---|---|---|
+X | |||
0.000 | 0.000 | 0.800 | |
0.650 | 0.650 | 0.000 | |
0.350 | 0.350 | 0.200 | |
+Z | |||
0.130 | 0.080 | 0.800 | |
0.000 | 0.000 | 0.000 | |
0.870 | 0.920 | 0.200 | |
−Z | |||
0.130 | 0.00 | 0.800 | |
0.000 | 0.650 | 0.000 | |
0.870 | 0.350 | 0.200 | |
Solar panel | |||
0.080 | 0.080 | 0.080 | |
0.000 | 0.000 | 0.000 | |
0.920 | 0.920 | 0.920 |
Solution | Annual Signal | 3 cpy Signal | 7-Day Signal |
---|---|---|---|
ECOM MEO | 84.6 | 19.6 | 5.8 |
ECOM IGSO + MEO | 61.1 | 16.9 | 3.3 |
ECOM2 MEO | 33.5 | 19.1 | 7.2 |
ECOM2 IGSO + MEO | 22.3 | 7.4 | 4.9 |
BW + ECOM MEO | 29.3 | 6.7 | 4.4 |
BW + ECOM IGSO + MEO | 20.2 | 6.1 | 2.4 |
Solution | SRP | X | Y | Z | |||
---|---|---|---|---|---|---|---|
Amp. (mm) | Phase (deg) | Amp. (mm) | Phase (deg) | Amp. (mm) | Phase (deg) | ||
MEO | ECOM | 1.6 ± 0.3 | 47.4 ± 11.5 | 3.9 ± 0.3 | 358.1 ± 4.9 | 84.6 ± 1.3 | 355.0 ± 0.9 |
IGSO + MEO | ECOM | 2.1 ± 0.6 | 53.5 ± 15.3 | 4.2 ± 0.6 | 340.6 ± 8.6 | 61.1 ± 1.2 | 358.8 ± 1.1 |
MEO | ECOM2 | 1.5 ± 0.3 | 25.9 ± 10.1 | 2.7 ± 0.3 | 359.4 ± 6.4 | 33.5 ± 1.5 | 348.7 ± 2.6 |
IGSO + MEO | ECOM2 | 1.6 ± 0.5 | 25.7 ± 10.3 | 3.3 ± 0.6 | 334.3 ± 11.1 | 22.3 ± 2.1 | 357.4 ± 5.5 |
MEO | BW + ECOM | 1.7 ± 0.6 | 33.4 ± 11.2 | 3.9 ± 0.7 | 307.9 ± 9.6 | 29.3 ± 0.9 | 348.1 ± 2.3 |
IGSO + MEO | BW + ECOM | 1.2 ± 0.4 | 31.0 ± 10.2 | 3.2 ± 0.4 | 343.0 ± 7.1 | 20.2 ± 0.8 | 355.7 ± 1.7 |
CODE | - | 1.1 ± 0.1 | 120.2 ± 5.6 | 0.5 ± 0.1 | 400.3 ± 14.0 | 1.5 ± 0.4 | 436.8 ± 13.3 |
ILRS | - | 3.7 ± 0.2 | 27.4 ± 2.7 | 3.2 ± 0.1 | 273.2 ± 2.5 | 5.0 ± 0.3 | 418.2 ± 3.8 |
SLR-Monthly [23] | - | 2.9 ± 0.4 | 35.0 ± 3.0 | 2.6 ± 0.2 | 306.0 ± 2.0 | 4.2 ± 0.3 | 393.0 ± 2.0 |
KALREF + GRACE [41] | - | 1.3 ± 0.1 | 46.0 ± 4.0 | 3.0 ± 0.1 | 330.0 ± 2.0 | 3.3 ± 0.2 | 386.0 ± 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Huang, S.; Yuan, Y.; Zhang, K.; Lou, J. Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration. Remote Sens. 2023, 15, 1243. https://doi.org/10.3390/rs15051243
Li X, Huang S, Yuan Y, Zhang K, Lou J. Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration. Remote Sensing. 2023; 15(5):1243. https://doi.org/10.3390/rs15051243
Chicago/Turabian StyleLi, Xingxing, Shi Huang, Yongqiang Yuan, Keke Zhang, and Jiaqing Lou. 2023. "Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration" Remote Sensing 15, no. 5: 1243. https://doi.org/10.3390/rs15051243
APA StyleLi, X., Huang, S., Yuan, Y., Zhang, K., & Lou, J. (2023). Geocenter Motions Derived from BDS Observations: Effects of the Solar Radiation Pressure Model and Constellation Configuration. Remote Sensing, 15(5), 1243. https://doi.org/10.3390/rs15051243