Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
Sea Level Data
2.3. Model Setup of SWAT and DSAS
2.3.1. SWAT Model’s Setup
2.3.2. DSAS Model’s Setup
- Shoreline Delineation
- Transect Casting Method from Baseline
2.3.3. Coupling of SWAT with DSAS
3. Results and Discussion
3.1. SWAT Model Outputs
3.1.1. Discharge
3.1.2. Soil Loss
3.1.3. Sediment Transport
3.2. Regression and Correlation Analysis
3.3. DSAS Outputs
3.3.1. Changes along the Coastline as a Result of the End Point Rate Analysis
3.3.2. Shoreline Change Envelope
3.3.3. Erosion-Accretion Scenario
3.3.4. Shoreline Change Prediction
4. Conclusions
- The SWAT model efficiently assessed the influence and extent of climatic instability (monsoonal variability) across the Subarnarekha River basin and its sub-basins.
- Simulating hydrological processes, e.g., discharge, soil loss, and sediment loss, with SWAT and combining it with a statistical model of DSAS enabled the assessment of sediment dynamics in the basin’s estuarine region (study area).
- The SWAT model’s result indicates that sediment loss along the Delta sub-basin dramatically increased recently (28,737 tons in 2017 to 83,749 tons in 2021).
- In addition, the prediction-based geospatial output of the study area produced by the DSAS model supports the simulation of SWAT mentioned above.
- Accretion along the shoreline, as per DSAS output, is also supported by the tidal action-induced sediment inflow simulated by SWAT.
- The coupled model framework indicates that the right bank of the Subarnarekha estuary experienced coastal erosion due to sediment loss. In contrast, the left bank of the estuary experienced deposition due to sediment intake.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRFG | Coarse Fragment Factor |
CWC | Central Water Commission |
DEM | Digital Elevation Model |
DN | Digital Number |
DSAS | Digital Shoreline Analysis System |
EPR | End Point Rate |
HRU | Hydrological Response Unit |
IMD | Indian Metrological Department |
LMS | Least Median of Squares |
LULC | Land use and land cover |
LRR | Linear Regression Rate |
MUSLE | Modified Universal Soil Loss Equation |
NSM | Net Shoreline Movement |
NSE | Nash–Sutcliffe Efficiency |
PBIAS | Per cent Bias |
PSMSL | Permanent Service of the Mean Sea Level |
RDE | River Deltaic Estuaries |
R2 | Coefficient Of Determination |
RMSE | Root mean square error |
RLR | Revised Local Reference |
SCE | Shoreline Change Envelope |
SUFI-2 | Sequential Uncertainty Fitting Version-2 |
SWAT | Soil and Water Assessment Tool |
SWAT CUP | SWAT Calibration and Uncertainty Program |
SRTM | Shuttle Radar Topography Mission |
TPMC | Terranear Project Management Consultancy |
USGS | United States Geological Survey |
Appendix A
Months | Maximum Temperature (°C) | Minimum Temperature (°C) | Average Temperature (°C) | Average Rainfall (mm) |
---|---|---|---|---|
January | 20.9 | 19.1 | 19.9 | 9.5 |
February | 23.5 | 21.2 | 22.7 | 25.3 |
March | 28.1 | 26 | 26.8 | 41.1 |
April | 29.3 | 28.3 | 28.8 | 110.7 |
May | 30.05 | 29.1 | 29.6 | 262.5 |
June | 30 | 29.3 | 29.7 | 273.6 |
July | 29.4 | 29 | 29.2 | 415.3 |
August | 29.2 | 29 | 29 | 422.4 |
September | 29.15 | 28.58 | 28.85 | 355.48 |
October | 28.36 | 27.65 | 28.042 | 247.388 |
November | 25.13 | 24.25 | 24.634 | 64.268 |
December | 21.13 | 20.38 | 20.84 | 35.224 |
Appendix B
Appendix B.1. Calibration and Validation of SWAT
Statistical Index | Range | Calibration | Validation |
---|---|---|---|
R2 | 0, 1 | 0.66 | 0.83 |
NSE | ∞, 1 | 0.34 | 0.67 |
RMSE | 0, 1 | 0.68 | 0.92 |
PBIAS | −∞, ∞ | −32.1 | −6.2 |
Appendix B.2. Validation of DSAS
References
- Li, Y.; Chen, B.M.; Wang, Z.G.; Peng, S.L. Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modelling. Hydrol. Sci. J. 2011, 56, 68–83. [Google Scholar] [CrossRef]
- Bianchi, T.S. Biogeochemistry of Estuaries; Oxford University Press on Demand: Oxford, UK, 2007. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar]
- Habel, M.; Mechkin, K.; Podgorska, K.; Saunes, M.; Babiński, Z.; Chalov, S.; Absalon, D.; Podgórski, Z.; Obolewski, K. Dam and reservoir removal projects: A mix of social-ecological trends and cost-cutting attitudes. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet Chang. 2003, 39, 111–126. [Google Scholar]
- Cohen, S.; Kettner, A.J.; Syvitski, J.P.M. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity. Glob. Planet Chang. 2014, 115, 44–58. [Google Scholar] [CrossRef]
- Chalov, S.; Prokopeva, K.; Habel, M. North to South Variations in the Suspended Sediment Transport Budget within Large Siberian River Deltas Revealed by Remote Sensing Data. Remote Sens. 2021, 13, 4549. [Google Scholar] [CrossRef]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Kareiva, P.; Lacayo, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Masselink, G.; Russell, P. Impacts of climate change on coastal erosion. MCCIP Sci. Rev. 2013, 2013, 71–86. [Google Scholar]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar]
- Lins-de-Barros, F.M. Integrated coastal vulnerability assessment: A methodology for coastal cities management integrating socioeconomic, physical and environmental dimensions-Case study of Região dos Lagos, Rio de Janeiro, Brazil. Ocean Coast Manag. 2017, 149, 1–11. [Google Scholar]
- Kantamaneni, K.; Phillips, M.; Thomas, T.; Jenkins, R. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean Coast Manag. 2018, 158, 164–175. [Google Scholar]
- Leatherman, S.P.; Zhang, K.; Douglas, B.C. Sea level rise shown to drive coastal erosion. Eos Trans. Am. Geophys. Union 2000, 81, 55–57. [Google Scholar]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Chang. 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Nath, A.; Koley, B.; Saraswati, S.; Choudhury, T.; Um, J.S.; Ray, B.C. Geospatial analysis of short term shoreline change behavior between Subarnarekha and Rasulpur estuary, east coast of India using intelligent techniques (DSAS). GeoJournal 2022, 1–21. [Google Scholar] [CrossRef]
- Ghosh, T.; Hajra, R.; Mukhopadhyay, A. Island erosion and afflicted population: Crisis and policies to handle climate change. In Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2014; pp. 217–225. [Google Scholar]
- Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ. 2021, 780, 146470. [Google Scholar]
- Sondi, I.; Lojen, S.; Juračić, M.; Prohić, E. Mechanisms of land–sea interactions–the distribution of metals and sedimentary organic matter in sediments of a river-dominated Mediterranean karstic estuary. Estuar. Coast Shelf. Sci. 2008, 80, 12–20. [Google Scholar] [CrossRef]
- Alongi, D.M. Coastal Ecosystems Processes; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Nayak, S. Use of satellite data in coastal mapping. Indian Cartogr. 2002, 22, 1. [Google Scholar]
- Thia-Eng, C. Essential elements of integrated coastal zone management. Ocean Coast Manag. 1993, 21, 81–108. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling And Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT 2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. Int. J. 2005, 19, 563–572. [Google Scholar]
- Dadhwal, V.K.; Mishra, N.; Aggarwal, S.P. Hydrological Simulation of Mahanadi River Basin and Impact of Land Use/Land Cover Change on Surface Runoff Using a Macro Scale Hydrological Model. ISPRS TC VII Symp. –100 Years ISPRS Vienna Austria 2010, XXXVIII, 165–170. [Google Scholar]
- Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A. v SWAT: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1491–1508. [Google Scholar]
- Chanapathi, T.; Thatikonda, S.; Raghavan, S. Analysis of Rainfall Extremes and Water Yield of Krishna River Basin Under Future Climate Scenarios. J. Hydrol. Reg. Stud. 2018, 19, 287–306. [Google Scholar] [CrossRef]
- Rathjens, H.; Oppelt, N.; Bosch, D.D.; Arnold, J.G.; Volk, M. Development of a grid-based version of the SWAT landscape model. Hydrol. Process 2015, 29, 900–914. [Google Scholar] [CrossRef]
- Hallouz, F.; Meddi, M.; Mahé, G.; Alirahmani, S.; Keddar, A. Modeling of Discharge and sediment transport through the SWAT Model in the basin of Harraza (Northwest of Algeria). Water Sci. 2018, 32, 79–88. [Google Scholar] [CrossRef]
- Acharyya, R.; Pramanick, N.; Mukherjee, S.; Ghosh, S.; Chanda, A.; Pal, I.; Mitra, D.; Mukhopadhyay, A. Evaluation of catchment hydrology and soil loss in non-perennial river system: A case study of Subarnarekha Basin, India. Model Earth Syst. Env. 2021, 8, 2401–2429. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Nguyen, H.K.L. Basin resources management: Simulating soil erosion risk by soil and water assessment tool (SWAT) in Ta Trach river watershed, central Vietnam. J. Vietnam. Environ. 2014, 6, 165–170. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Hwang, C. Forecasting the Potential Effects of Climatic and Land-Use Changes on Shoreline Variation in Relation to Watershed Sediment Supply and Transport. J. Coast Res. 2017, 33, 874–888. [Google Scholar]
- Olaoye, I.A.; Confesor, R.B.; Ortiz, J.D. Impact of seasonal variation in climate on water quality of old woman creek watershed ohio using swat. Climate 2021, 9, 50. [Google Scholar]
- Yaduvanshi, A.; Srivastava, P.; Worqlul, A.W.; Sinha, A.K. Uncertainty in a Lumped and a Semi-Distributed Model for Discharge Prediction in Ghatshila Catchment. Water 2018, 10, 381. [Google Scholar]
- Madhusudana Rao, C.; Bardhan, A.; Patra, J.P. Assessment of hydrological response in Subarnarekha river basin under anticipated climate change scenarios. Glob. Nest J. 2020, 22, 207–219. [Google Scholar]
- Dandapat, A.K. Evaluation of loss models and effect of LULC changes on surface runoff in Subarnarekha River Basin in India. ISH J. Hydraul. Eng. 2018, 27, 542–555. [Google Scholar]
- Murmu, R.S. Murmu, R.S. Murmu Simulation of Runoff for Subarnarekha Catchment Using SWAT Model. In Water Security and Sustainability: Proceedings of Down To Earth 2019; Bhuiyan, C., Ed.; Springer: Singapore, 2021; Volume 115, pp. 157–168. [Google Scholar]
- Oyedotun, T.D.T. Shoreline Geometry: DSAS as a Tool for Historical Trend Analysis. Geomorphol. Tech. 2014, 2, 1–12. [Google Scholar]
- Bheeroo, R.A.; Chandrasekar, N.; Kaliraj, S.; Magesh, N.S. Shoreline change rate and erosion risk assessment along the Trou Aux Biches–Mont Choisy beach on the northwest coast of Mauritius using GIS-DSAS technique. Environ. Earth Sci. 2016, 75, 444. [Google Scholar] [CrossRef]
- Nassar, K.; Mahmod, W.E.; Fath, H.; Masria, A.; Nadaoka, K.; Negm, A. Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Mar. Georesources Geotechnol. 2018, 37, 81–95. [Google Scholar]
- Nath, A.; Koley, B.; Saraswati, S.; Ray, B.C. Identification of the coastal hazard zone between the areas of Rasulpur and Subarnarekha estuary, east coast of India using multi-criteria evaluation method. Model Earth Syst. Environ. 2021, 7, 2251–2265. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0-an ArcGIS Extension for Calculating Shoreline Change; US Geological Survey: Asheville, NC, USA, 2009. [Google Scholar]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide; US Geological Survey: Reston, Virginia, USA, 2018. [Google Scholar]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar]
- Mukhopadhyay, A.; Mukherjee, S.; Mukherjee, S.; Ghosh, S.; Hazra, S.; Mitra, D. Automatic shoreline detection and future prediction: A case study on Puri Coast, Bay of Bengal, India. Eur. J. Remote Sens. 2012, 45, 201–213. [Google Scholar]
- Das, S. Four decades of water and sediment discharge records in Subarnarekha and Burhabalang basins: An approach towards trend analysis and abrupt change detection. Sustain. Water Resour. Manag. 2019, 5, 1665–1676. [Google Scholar] [CrossRef]
- Negi, S.S. Biodiversity and Its Conservation in India; Indus Publishing: New Delhi, India, 1993. [Google Scholar]
- Paul, A.K. Coastal Geomorphology and Environment: Sundarban Coastal Plain, Kanthi Coastal Plain, Subarnarekha Delta Plain; ACB Publications: Washington, DC, USA, 2002. [Google Scholar]
- Jana, S.; Paul, A.K. Assessment of morphogenetic sedimentary depositional environments of different morphological surfaces of middle-lower and deltaic courses of Subarnarekha River. J. Coast. Sci. 2018, 6, 1–11. [Google Scholar]
- National Oceanography Centre Permanent Service for Mean Sea Level, Tide Gauge Data. Available online: https://www.psmsl.org/ (accessed on 7 May 2022).
- Nandy, S.; Bandyopadhyay, S. Trend of Sea Level Change in the Hugli Estuary, India; NISCAIR-CSIR: New Delhi, India, 2011. [Google Scholar]
- Kumar Mandal, U.; Bikas Nayak, D.; Samui, A.; Kumar Jana, A.; Mullick, S.; Lama, T.D.; Bhardwaj, A.K.; Mahanta, K.K.; Mandal, S.; Raut, S.; et al. Trend of Sea-level-rise in West Bengal Coast. Indian J. Coast. Agric. Res. 2018, 36, 64–73. [Google Scholar]
- Hosseini, S.H.; Khaleghi, M.R. Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: The Zoshk–Abardeh watershed). Model Earth Syst. Environ. 2020, 6, 2003–2013. [Google Scholar] [CrossRef]
- Flügel, W. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Process 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021, 13, 2014. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Technical Report no. 406; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 641–647. [Google Scholar]
- Williams, J.R. Predicting Sediment Yield Frequency for Rural Basins to Determine Man’s Effect on Long-Term Sedimentation; IAHS Publication: Wallingford, UK, 1975; pp. 105–108. [Google Scholar]
- Abbaspour, K.C. SWAT CUP: SWAT Calibration and Uncertainity Program—A User Manual; Eawag: Dübendorf, Switzerland, 2015; pp. 16–70. [Google Scholar]
- Nash, J.E.; Stutcliffe, J. v River Flow Forecasting through Conceptual Models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar]
- Mishra, S.K.; Tyagi, J.; Singh, V.P.; Singh, R. SCS-CN-based modeling of sediment yield. J. Hydrol. 2006, 324, 301–322. [Google Scholar]
- Pramanick, N.; Islam, E.; Banerjee, S.; Mukherjee, R.; Maity, A.; Acharyya, R.; Chanda, A.; Pal, I.; Mukhopadhyay, A. Threats from Sea Level Rise and Erosion. Urban Ecol. Glob. Clim. Chang. 2022, 16, 321–345. [Google Scholar]
- Ryu, J.-H.; Won, J.-S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Nandi, S.; Ghosh, M.; Kundu, A.; Dutta, D.; Baksi, M. Shoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India). J. Coast Conserv. 2016, 20, 61–80. [Google Scholar]
- Buchanan, T.J.; Somers, W.P. Discharge measurements at gaging stations. In Techniques of Water-Resources Investigation; Turnipseed, D.P., Sauer, V.B., Eds.; U.S. Geological Survey: Reston, Virginia, USA, 2010; p. 106. [Google Scholar]
- Yuan, Y.; Xiong, D.; Han, W.; Liu, L.; Li, W.; Chidi, C.; Dahal, N.M.; Neupane, N. Using 137Cs and 210Pbex to trace soil erosion rates for a small catchment in the mid-hills of Nepal. J. Soils Sediments 2021, 21, 403–418. [Google Scholar]
- Worlddata.info Cyclones in India. Available online: https://www.worlddata.info/asia/india/cyclones.php (accessed on 15 November 2022).
- Bouwman, A.F. The role of soils and land use in the greenhouse effect. Neth. J. Agric. Sci. 1989, 37, 13–19. [Google Scholar] [CrossRef]
- Fenster, M.S.; Dolan, R.; Elder, J.F. A new method for predicting shoreline positions from historical data. J. Coast Res. 1993, 9, 147–171. [Google Scholar]
- Jana, S.; Paul, A.K. Genetical Classification of Deltaic and Non Deltaic Sequences of Landforms of Subarnarekha Middle Course and Lower Course Sections in Odisha and Parts of West Bengal with Application of Geospatial Technology. J. Coast. Sci. 2018, 5, 16–26. [Google Scholar]
- Wilkinson, B.H.; McElroy, B.J. The impact of humans on continental erosion and sedimentation. GSA Bulletin. 2007, 119, 140–156. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Nicholls, R.J. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar]
- Panda, D.K.; Kumar, A.; Mohanty, A. Recent trends in sediment load of the tropical (Peninsular) river basins of India. Glob. Planet Chang. 2011, 75, 108–111. [Google Scholar] [CrossRef]
- Dong, T.Y.; Nittrouer, J.A.; Il’icheva, E.; Pavlov, M.; McElroy, B.; Czapiga, M.J.; Ma, H.; Parker, G. Controls on gravel termination in seven distributary channels of the Selenga River Delta, Baikal Rift basin, Russia. Geol. Soc. Am. Bull. 2016, 128, 1297–1312. [Google Scholar] [CrossRef]
- Biswas, A. Laterites and lateritoids of Rarh Bengal. Explorations in the Tropics. Prof. KD Dikshit Felicitation Vol. Comm. 1987, 6, 48–54. [Google Scholar]
- Niyogi, D. Quaternary mapping in plains of West Bengal. In Program of the Seminar on Geomorphology, Geohydrology and Geotechnics of the Lower Ganga Basin; Indian Institute of Technology: Khargpurs, India, 1972; Volume 86, Available online: https://www.automationjournal.org/download/indian-geomorphology/ (accessed on 20 May 2022).
- Niyogi, D.; Mallick, S. Morphology of the Midnapore district, West Bengal. In Proc. Seminar Geomorphology, Geohydrology and Geotectonic of the Lower Ganga Basin; Indian Institute of Technology: Kharagpurs, India, 1972; Volume 86, Available online: https://www.automationjournal.org/download/indian-geomorphology/ (accessed on 20 May 2022).
- Mallick, S.; Bhattacharya, A.; Niyogi, D. A comparative study of the Quaternary formations in the Baitarani valley, Orissa with those of the Damodar-Ajoy delta area, Lower Ganga Basin. In Proc. Seminar Geomorphology, Geohydrology and Geotectonic of the Lower Ganga Basin; Indian Institute of Technology: Kharagpurs, India, 1972; Volume 86, pp. 91–104. Available online: https://www.automationjournal.org/download/indian-geomorphology/ (accessed on 20 May 2022).
- Singh, A.K.; Giri, S. Subarnarekha River: The Gold Streak of India. In The Indian Rivers: Scientific and Socio-Economic Aspects; Singh, D., Ed.; Springer Singapore: Singapore, 2018; pp. 273–285. [Google Scholar]
- Dey, S.; Ghosh, P.; Nayak, A. The influences of natural environment upon the evolution of sands dunes in tropical environment along Medinipur Coastalarea, India. Indones. J. Geogr. 2005, 37, 1. [Google Scholar]
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. SRTM 90m DEM Digital Elevation Database. Available online: http://srtm.csi.cgiar.org (accessed on 2 January 2020).
- FAO-UN-Land and Water Division (CBL). Digital Soil Map of the World. Available online: www.fao.org (accessed on 5 December 2019).
- Dodge, Y. Coefficient of Determination. In The Concise Encyclopedia of Statistics; Springer New York: New York, NY, USA, 2008; pp. 88–91. [Google Scholar]
- AgriMetSoft Online Calculators. 2019. Available online: https://agrimetsoft.com/ (accessed on 6 February 2023).
- Narsimlu, B.; Gosain, A.K.; Chahar, B.R. Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model. Water Resour. Manag. 2013, 27, 3647–3662. [Google Scholar] [CrossRef]
Data Type | Description | Location/Extension | Time/Period | Resolution | Source |
---|---|---|---|---|---|
Topography | DEM (Digital Elevation Model) | Delta Sub-basin (Subarnarekha Basin) | 2011 | 90 m | srtm.csi.cgiar.org (accessed on 2 May 2022) |
Land-cover | Multispectral Satellite Imagery-Landsat 8 | West Bengal, Odisha state | 2017–2021 | 30 m | earthexplorer.usgs.gov (accessed on 2 May 2022) |
Soil Classes | DSMW (Digital Soil Map of World) | West Bengal, Odisha state | 1995 | 5 km | fao.org (accessed on 2 May 2022) |
River Discharge | Daily Discharge Data of Gauge Station (m3/sec) | Rajghat Gauge Station (21°46′04′′N 87°09′51′′E), Subarnarekha river, Odisha state | 2017–2021 | _ | Central Water Commission cwc.gov.in (accessed on 1 May 2022) |
Weather | Rainfall Temperature Relative Humidity Wind speed Solar radiation | 23°39′40.68′′N 85°21′25.92′′E 20°46′23.52′′N 87°22′43.32′′E | 2017–2021 | 54 stations. 0.25° ×0.25° | Indian Metrological Department mausam.imd.gov.in (accessed on 20 April 2022) |
Sea-Level | Sea | Gauge stations: Paradip (20°16′1.2′′N; 86°42′E), Haldia (22°1′59.99′′N; 88°6′E), Diamond Harbour (22°12′N; 88°10′1.2′′E) | 2000–2020 2000–2020 2000–2015 | 3 stations | pmsl.org/data/obtaining/rlr.diagrams/1270.php (accessed on 7 May 2022) |
Months | Minimum | Average | Maximum |
---|---|---|---|
January | 2.58 | 22.47 | 45.85 |
February | 4.52 | 18.11 | 35.09 |
March | 9.46 | 28.90 | 49.86 |
April | 13.42 | 34.27 | 51.34 |
May | 14.27 | 57.57 | 103.58 |
June | 26.79 | 54.66 | 89.24 |
July | 32.05 | 99.29 | 165.98 |
August | 94.20 | 123.02 | 173.85 |
September | 60.11 | 99.13 | 190.56 |
October | 32.59 | 59.79 | 85.08 |
November | 8.82 | 23.00 | 52.62 |
December | 7.86 | 30.14 | 71.90 |
Selected Land Cover Classes | Area in km2 | |
---|---|---|
Erosion | Accretion | |
Crop Land | 0.14 | _ |
Mangrove | 0.37 | _ |
Sand deposits | 1.02 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharyya, R.; Mukhopadhyay, A.; Habel, M. Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries. Remote Sens. 2023, 15, 958. https://doi.org/10.3390/rs15040958
Acharyya R, Mukhopadhyay A, Habel M. Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries. Remote Sensing. 2023; 15(4):958. https://doi.org/10.3390/rs15040958
Chicago/Turabian StyleAcharyya, Rituparna, Anirban Mukhopadhyay, and Michał Habel. 2023. "Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries" Remote Sensing 15, no. 4: 958. https://doi.org/10.3390/rs15040958
APA StyleAcharyya, R., Mukhopadhyay, A., & Habel, M. (2023). Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries. Remote Sensing, 15(4), 958. https://doi.org/10.3390/rs15040958